期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于MES的CO_(2)减排与高价值有机物转化研究进展
1
作者 王黎 张嘉方 +2 位作者 张爱心 胡宁 廖梦根 《现代化工》 CAS CSCD 北大核心 2022年第7期28-31,共4页
微生物电化学系统(MES)是一种可选择的CO_(2)减排利器,能够在降解温室效应的同时将CO_(2)转化为高价值有机物,解决CO_(2)的能源与资源化问题,因此受到了极大关注。MES系统是一种电驱动的生物电化学电子转移系统,可驱动CO_(2)转化为高价... 微生物电化学系统(MES)是一种可选择的CO_(2)减排利器,能够在降解温室效应的同时将CO_(2)转化为高价值有机物,解决CO_(2)的能源与资源化问题,因此受到了极大关注。MES系统是一种电驱动的生物电化学电子转移系统,可驱动CO_(2)转化为高价值C_(1)~C_(n)有机物。电活性微生物(EAB)的胞外电子传递效率是提高MES转化效率的关键因素。因此,探索解析电活性微生物胞外电子转移规律和转化过程的影响因素,有望揭示MES的微观机理,提高MES的转化效率,突破MES商业化发展瓶颈。 展开更多
关键词 微生物电化学 CO_(2) 电还原 高价值有机物 电子转移效率
下载PDF
Influence of Warm Oxide Layer on Wettability and Contact Angle for Heat Transport Devices
2
作者 A. Takemura K. Yuki A. Sadayuki 《Journal of Mechanics Engineering and Automation》 2017年第7期341-347,共7页
Recently, high heat density has become a problem in electronic devices. Therefore, high heat-transfer efficiency is required in copper heat exchangers. Improvement ofwettability is reported to improve the heat-transfe... Recently, high heat density has become a problem in electronic devices. Therefore, high heat-transfer efficiency is required in copper heat exchangers. Improvement ofwettability is reported to improve the heat-transfer efficiency. In previous studies, copper oxide layer improves the wettability. In this study, we focus on a copper oxide layer produced under warm conditions (from 200 to 300 ℃), which are suitable oxidation conditions for improving wettability. Experimental results showed that the surface of the specimens was covered by the oxidation layer and took on a black color. Furthermore, the wettability was improved by the warm copper oxide layer. While, the surface roughness was approximately constant to each warm oxidized specimen. Whereat, the warm oxide layer was observed by SEM (sanning electron microscope). The results from SEM observations showed that the warm copper oxide layer consisted of stacks and combinations of nanoscopic warm oxidation particles. Thus, the warm oxidation layer has nanoscopic surface asperities. It is seemed that these nanoscopic asperities improved the wettability. 展开更多
关键词 Warm oxide layer heat-transfer efficiency WETTABILITY contact angle.
下载PDF
Alloy-like ternary polymer solar cells with over 17.2% efficiency 被引量:13
3
作者 Qiaoshi An Jian Wang +8 位作者 Wei Gao Xiaoling Ma Zhenghao Hu Jinhua Gao Chunyu Xu Minghui Hao Xiaoli Zhang Chuluo Yang Fujun Zhang 《Science Bulletin》 SCIE EI CAS CSCD 2020年第7期538-545,M0003,共9页
Ternary strategy has been considered as an efficient method to achieve high performance polymer solar cells(PSCs). A power conversion efficiency(PCE) of 17.22% is achieved in the optimized ternary PSCs with10 wt% MF1 ... Ternary strategy has been considered as an efficient method to achieve high performance polymer solar cells(PSCs). A power conversion efficiency(PCE) of 17.22% is achieved in the optimized ternary PSCs with10 wt% MF1 in acceptors. The over 8% PCE improvement by employing ternary strategy is attributed to the simultaneously increased JSCof 25.68 mA cm^-2, VOCof 0.853 V and FF of 78.61% compared with Y6 based binary PSCs. The good compatibility of MF1 and Y6 can be confirmed from Raman mapping, contact angle,cyclic voltammetry and morphology, which is the prerequisite to form alloy-like state. Electron mobility in ternary active layers strongly depends on MF1 content in acceptors due to the different lowest unoccupied molecular orbital(LUMO) levels of Y6 and MF1, which can well explain the wave-like varied FF of ternary PSCs. The third-party certified PCE of 16.8% should be one of the highest values for single bulk heterojunction PSCs. This work provides sufficient references for selecting materials to achieve efficient ternary PSCs. 展开更多
关键词 Polymer solar cells Ternary strategy Nonfullerene acceptor Alloy-like model
原文传递
Theoretical insight into the stereometric effect of bisPC71BM on polymer cell performance 被引量:1
4
作者 Wen-Peng Wu Lin-Long Deng +1 位作者 Xiang Li Yi Zhao 《Science Bulletin》 SCIE EI CAS CSCD 2016年第2期139-147,共9页
It has been experimentally demonstrated that the stereometric packings of two new bisPC_(71) BM isomers have an important impact on the power conversion efficiency of organic solar cells. Here, a theoretical investiga... It has been experimentally demonstrated that the stereometric packings of two new bisPC_(71) BM isomers have an important impact on the power conversion efficiency of organic solar cells. Here, a theoretical investigation is made to reveal the mechanism behind from detailed photophysical processes in performed cells. The results show that the crystal packings of isomers affect the electron mobilities dominantly from the electronic coupling for electron transfer, and the trends of calculated mobilities are consistent with experimental measurements although the magnitudes are obviously larger. For the performed cells from two isomers with poly(3-hexylthiophene) as a donor, it is found that the exciton dissociation yields are also different, manifesting that stereometric packings essentially control the cell efficiency via both electron mobilities and exciton dissociation. Furthermore,the reasons for low cell efficiencies are analyzed, and possible improvements are suggested. 展开更多
关键词 Organic solar cell BisPC71BM Density functional theory Electron transfer Carriermobility
原文传递
Rutile TiO2 Microspheres with Exposed Nano-Acicular Single Crystals for Dye-Sensitized Solar Cells 被引量:5
5
作者 Haimin Zhang Hua Yu +5 位作者 Yanhe Han Porun Liu Shanqing Zhang Peng Wang Yibing Cheng Huijun Zhao 《Nano Research》 SCIE EI CAS CSCD 2011年第10期938-947,共10页
Uniquely structured rutile TiO2 microspheres with exposed nano-acicular single crystals have been successfully synthesized via a facile hydrothermal method. After calcination at 450 ℃ for 2 h, the futile TiO2 microsp... Uniquely structured rutile TiO2 microspheres with exposed nano-acicular single crystals have been successfully synthesized via a facile hydrothermal method. After calcination at 450 ℃ for 2 h, the futile TiO2 microspheres with a high surface area of 132 m2/g have been utilized as a light harvesting enhancement material for dye-sensitized solar cells (DSSCs). The resultant DSSCs exhibit an overall light conversion efficiency of 8.41% for TiO2 photoanodes made of futile TiO2 microspheres and anatase TiO, nanoparticles (mass ratio of 1:1), significantly higher than that of pure anatase TiO2 nanoparticle photoanodes of similar thickness (6.74%). Such a significant improvement in performance can be attributed to the enhanced light harvesting capability and synergetic electron transfer effect. This is because the photoanodes made of futile TiO2 microsphere possess high refractive index which improves the light utilisation efficiency, suitable microsphere core sizes (450-800 nm) to effectively scatter visible light, high surface area for dye loading, and synergetic electron transfer effects between nanoparticulate anatase and nano-acicular futile single crystals phases giving high electron collection efficiency. 展开更多
关键词 High refractive index rutile TiO2 microspheres acicular single crystals synergetic effect dye-sensitized solarcells (DSSCs)
原文传递
Synergistic high efficiency and low energy loss of all-small-molecule organic solar cells based on benzotriazole-basedπ-bridge unit 被引量:2
6
作者 Jing Guo Ke Hu +6 位作者 Beibei Qiu Dengchen Yang Xiaojun Li Jinyuan Zhang Lei Meng Zhanjun Zhang Yongfang Li 《Science China Materials》 SCIE EI CAS CSCD 2022年第12期3382-3391,共10页
Reducing energy loss(V_(loss))is one of the most crucial challenges in organic photovoltaic cells.The V_(loss),determined by the differences between the optical band gap(E_(g))of the active layer material and the open... Reducing energy loss(V_(loss))is one of the most crucial challenges in organic photovoltaic cells.The V_(loss),determined by the differences between the optical band gap(E_(g))of the active layer material and the open-circuit voltage(V_(oc))of the device,is generally alleviated by lowering the energy difference between the lowest unoccupied molecular orbital(LUMO)and highest occupied molecular orbital(HOMO)level of the donor(D)and acceptor(A).In this work,we synthesized two A-π-D-π-A-type small-molecule donors(SMDs)SM-benzotriazole(BTz)-1 and SM-BTz-2 by introducing a BTzπ-bridge unit and terminal regulation.The BTzπ-bridge unit significantly lowers the HOMO energy level of SMDs,resulting in high V_(oc)and high mobility,achieving a balance of low energy loss(<0.5 eV)and high efficiency.Ultimately,the organic solar cells based on SM-BTz-2 as the donor and Y6 as the acceptor obtain a high V_(oc)of 0.91 V,J_(sc) of 22.8 mA cm^(−2),fill factor of 68%,and power conversion efficiency(PCE)of 14.12%,which is one of the highest efficiencies based on the SMDs with triazoleπ-bridges to date.What’s more,the BTzπ-bridge unit is a potential unit that can improve mobility and reduce energy loss. 展开更多
关键词 small-molecule donor materials all-small-molecule organic solar cells benzotriazoleπ-bridge energy loss
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部