The effects of pre-aging treatments on subsequent artificial aging response were investigated by means of transmission electron microscopy observations and hardness test in age hardened Al-3.95Cu-(1.32Mg)-0.52Mn-0.11 ...The effects of pre-aging treatments on subsequent artificial aging response were investigated by means of transmission electron microscopy observations and hardness test in age hardened Al-3.95Cu-(1.32Mg)-0.52Mn-0.11 Zr alloys. In Al-3.95Cu-0.52Mn-0.11 Zr alloy, when the pre-aging temperature is 25 °C, the pre-aging treatment has no evident effect on the peak hardness of subsequent artificial aging, while a positive effect(increase of peak hardness) appears when pre-aging temperature is50 °C. However, in Al-3.95Cu-1.32Mg-0.52Mn-0.11 Zr alloy, it is found that whether the pre-aging temperature is 25 °C or 50 °C,the peak artificial aging hardness is lower than that of T6 treated alloy, that is to say, pre-aging treatment has a negative effect on the peak hardness of subsequent artificial aging in the alloys.展开更多
Interstitial Cajal-like cells are a distinct type of interstitial cell with a wide distribution in mammalian organs and tissues,and have been given the name"telocytes".Recent studies have demonstrated the po...Interstitial Cajal-like cells are a distinct type of interstitial cell with a wide distribution in mammalian organs and tissues,and have been given the name"telocytes".Recent studies have demonstrated the potential roles of telocytes in heart development,renewal,and repair.However,further research on the functions of telocytes is limited by the complicated in vivo environment.This study was designed to construct engineered heart tissue(EHT)as a three-dimensional model in vitro to better understand the role of telocytes in the architectural organization of the myocardium.EHTs were constructed by seeding neonatal cardiomyocytes in collagen/Matrigel scaffolds followed by culture under persistent static stretch.Telocytes in EHTs were identified by histology,toluidine blue staining,immunofluorescence,and transmission electron microscopy.The results from histology and toluidine blue staining demonstrated widespread putative telocytes with compact toluidine blue-stained nuclei,which were located around cardiomyocytes.Prolongations from the cell bodies showed a characteristic dichotomous branching pattern and formed networks in EHTs.Immunofluorescence revealed positive staining of telocytes for CD34 and vimentin with typical moniliform prolongations.A series of electron microscopy images further showed that typical telocytes embraced the cardiomyocytes with their long prolongations and exhibited a marked appearance of nursing cardiomyocytes during the construction of EHTs.This finding highlights the great importance of telocytes in the architectural organization of EHTs.It also suggests that EHT is an appropriate physical and pathological model system in vitro to study the roles of telocytes during heart development and regeneration.展开更多
Because short pulse Nd:YAG laser of nanosecond pulse-width and high peak power has a unique capability to improve the mechanical properties of metal parts,a study on the development of high peak power short pulse from...Because short pulse Nd:YAG laser of nanosecond pulse-width and high peak power has a unique capability to improve the mechanical properties of metal parts,a study on the development of high peak power short pulse from Nd:YAG laser along with its peening application has been performed.The design scheme of laser and the characteristic of laser beam transmission are presented and discussed.A pulse energy of 25 J with 15 ns pulse-width and a maximum peak power of 1660 k W laser system which use one oscillation and eight amplifiers has been achieved.Laser beam has a max divergence angle of 0.03 mrad,a pulse-to-pulse pulse-width stability of±0.1 ns,and the pulse-to-pulse energy stability factors of less than±2.8%.A low value of divergence means an easier modification of a nearly hat-top laser beam intensity profile and an easier transmission of laser beam.To evaluate the performance of the laser system,several metal materials are processed.Laser peening quality and efficiency are analyzed by using an optical microscope,a transmission electron microscope,and an X-ray diffraction device.The processing results show that the performance of this laser system is excellent.展开更多
基金Project(2006AA03Z517)supported by the National High-tech Research and Development Program of ChinaProject(CSUZC2013019)supported by Open Fund for the Precision Instruments of Central South University,China
文摘The effects of pre-aging treatments on subsequent artificial aging response were investigated by means of transmission electron microscopy observations and hardness test in age hardened Al-3.95Cu-(1.32Mg)-0.52Mn-0.11 Zr alloys. In Al-3.95Cu-0.52Mn-0.11 Zr alloy, when the pre-aging temperature is 25 °C, the pre-aging treatment has no evident effect on the peak hardness of subsequent artificial aging, while a positive effect(increase of peak hardness) appears when pre-aging temperature is50 °C. However, in Al-3.95Cu-1.32Mg-0.52Mn-0.11 Zr alloy, it is found that whether the pre-aging temperature is 25 °C or 50 °C,the peak artificial aging hardness is lower than that of T6 treated alloy, that is to say, pre-aging treatment has a negative effect on the peak hardness of subsequent artificial aging in the alloys.
基金supported by the National High Technology Research and Development Program of China(2012AA020506)Key Program of National Natural Science Foundation of China(31030032)+1 种基金National Natural Science Funds for Distinguished Young Scholar(31025013)the National Natural Science Foundation of China(31100697)
文摘Interstitial Cajal-like cells are a distinct type of interstitial cell with a wide distribution in mammalian organs and tissues,and have been given the name"telocytes".Recent studies have demonstrated the potential roles of telocytes in heart development,renewal,and repair.However,further research on the functions of telocytes is limited by the complicated in vivo environment.This study was designed to construct engineered heart tissue(EHT)as a three-dimensional model in vitro to better understand the role of telocytes in the architectural organization of the myocardium.EHTs were constructed by seeding neonatal cardiomyocytes in collagen/Matrigel scaffolds followed by culture under persistent static stretch.Telocytes in EHTs were identified by histology,toluidine blue staining,immunofluorescence,and transmission electron microscopy.The results from histology and toluidine blue staining demonstrated widespread putative telocytes with compact toluidine blue-stained nuclei,which were located around cardiomyocytes.Prolongations from the cell bodies showed a characteristic dichotomous branching pattern and formed networks in EHTs.Immunofluorescence revealed positive staining of telocytes for CD34 and vimentin with typical moniliform prolongations.A series of electron microscopy images further showed that typical telocytes embraced the cardiomyocytes with their long prolongations and exhibited a marked appearance of nursing cardiomyocytes during the construction of EHTs.This finding highlights the great importance of telocytes in the architectural organization of EHTs.It also suggests that EHT is an appropriate physical and pathological model system in vitro to study the roles of telocytes during heart development and regeneration.
基金supported by the National Hi-Tech Research and Development Program of China("863"Project)(Grant No.2012AA041310)
文摘Because short pulse Nd:YAG laser of nanosecond pulse-width and high peak power has a unique capability to improve the mechanical properties of metal parts,a study on the development of high peak power short pulse from Nd:YAG laser along with its peening application has been performed.The design scheme of laser and the characteristic of laser beam transmission are presented and discussed.A pulse energy of 25 J with 15 ns pulse-width and a maximum peak power of 1660 k W laser system which use one oscillation and eight amplifiers has been achieved.Laser beam has a max divergence angle of 0.03 mrad,a pulse-to-pulse pulse-width stability of±0.1 ns,and the pulse-to-pulse energy stability factors of less than±2.8%.A low value of divergence means an easier modification of a nearly hat-top laser beam intensity profile and an easier transmission of laser beam.To evaluate the performance of the laser system,several metal materials are processed.Laser peening quality and efficiency are analyzed by using an optical microscope,a transmission electron microscope,and an X-ray diffraction device.The processing results show that the performance of this laser system is excellent.