采用数值分析方法进行模拟分析In Ga N/Ga N混合多量子阱中移去p-Al Ga N电子阻挡层对Ga N基双蓝光波长发光二极管(LED)性能的影响。结果发现,与传统的具有p-Al Ga N电子阻挡层的双蓝光波长LED相比,移去电子阻挡层能有效地改善电子和空...采用数值分析方法进行模拟分析In Ga N/Ga N混合多量子阱中移去p-Al Ga N电子阻挡层对Ga N基双蓝光波长发光二极管(LED)性能的影响。结果发现,与传统的具有p-Al Ga N电子阻挡层的双蓝光波长LED相比,移去电子阻挡层能有效地改善电子和空穴在混合多量子阱活性层中的分布均匀性,实现电子空穴在各个量子阱中的均衡辐射。在小电流驱动时,移去电子阻挡层器件的发光功率要明显优于具有电子阻挡层的器件;而在大电流驱动时,电子阻挡层能有效地减少电子溢流,改善器件的发光效率。展开更多
采用SiLENSe(Simulator of light emitters based on nitride semiconductors)软件仿真研究了Al_(x)In_(y)Ga_(1-x-y)N电子阻挡层(EBL)Al组分渐变方式对GaN基激光二极管(LD)光电性能的影响,实现了提高输出功率和电光转换效率的目的。文...采用SiLENSe(Simulator of light emitters based on nitride semiconductors)软件仿真研究了Al_(x)In_(y)Ga_(1-x-y)N电子阻挡层(EBL)Al组分渐变方式对GaN基激光二极管(LD)光电性能的影响,实现了提高输出功率和电光转换效率的目的。文中提出的四种Al组分渐变方式分别是传统均匀组分、右阶梯渐变组分(0~0.07~0.16)、三角形渐变组分(0~0.16~0)、左阶梯渐变组分(0.16~0.07~0)。结果表明,与传统均匀组分EBL结构相比,Al组分阶梯渐变Al_(x)In_(y)Ga_(1-x-y)N EBL LD导带底的电子势垒显著提高,价带顶的空穴势垒降低。这主要是由于该结构能有效抑制电子泄漏和提高空穴注入效率,从而提高有源区载流子浓度,进而提高有源区辐射复合效率。当注入电流为0.48 A时,采用Al组分阶梯渐变Al_(x)In_(y)Ga_(1-x-y)N EBL结构能将器件开启电压从5.1 V降至4.9 V,光学损耗从3.4 cm^(-1)降至3.29 cm^(-1),从而使光输出功率从335 mW提高至352 mW,电光转换效率从12.5%提高至13.4%。此外,讨论了Al组分阶梯渐变EBL结构对GaN基蓝光LD光电性能的影响机制。该结构设计将为外延生长高功率GaN基LD提供实验数据和理论支撑。展开更多
在LED中引入了Al0.1Ga0.9N-Al x Ga1-x N-Al0.1Ga0.9N多层电子阻挡层,并讨论结构中插入的势阱深度(即中间层Al x Ga1-x N的Al组分"x")的变化对LED性能带来的影响。研究发现,具有三明治结构电子阻挡层(EBL)的LED比传统LED具有...在LED中引入了Al0.1Ga0.9N-Al x Ga1-x N-Al0.1Ga0.9N多层电子阻挡层,并讨论结构中插入的势阱深度(即中间层Al x Ga1-x N的Al组分"x")的变化对LED性能带来的影响。研究发现,具有三明治结构电子阻挡层(EBL)的LED比传统LED具有更好的发光特性,并且其性能与电子阻挡层中的势阱深度密切相关。究其原因,一是由于电子阻挡层内部不同程度的晶格失配而引入的极化电场引起了电子阻挡层的有效势垒高度的不同;二是在于电子阻挡层中的势阱所产生的空穴聚集效应也会随着势阱深度的变化而变化。故而使得空穴注入效率和电子阻挡层对电子的限制作用在不同势阱深度的LED样品中有所不同。展开更多
文摘采用数值分析方法进行模拟分析In Ga N/Ga N混合多量子阱中移去p-Al Ga N电子阻挡层对Ga N基双蓝光波长发光二极管(LED)性能的影响。结果发现,与传统的具有p-Al Ga N电子阻挡层的双蓝光波长LED相比,移去电子阻挡层能有效地改善电子和空穴在混合多量子阱活性层中的分布均匀性,实现电子空穴在各个量子阱中的均衡辐射。在小电流驱动时,移去电子阻挡层器件的发光功率要明显优于具有电子阻挡层的器件;而在大电流驱动时,电子阻挡层能有效地减少电子溢流,改善器件的发光效率。
文摘在LED中引入了Al0.1Ga0.9N-Al x Ga1-x N-Al0.1Ga0.9N多层电子阻挡层,并讨论结构中插入的势阱深度(即中间层Al x Ga1-x N的Al组分"x")的变化对LED性能带来的影响。研究发现,具有三明治结构电子阻挡层(EBL)的LED比传统LED具有更好的发光特性,并且其性能与电子阻挡层中的势阱深度密切相关。究其原因,一是由于电子阻挡层内部不同程度的晶格失配而引入的极化电场引起了电子阻挡层的有效势垒高度的不同;二是在于电子阻挡层中的势阱所产生的空穴聚集效应也会随着势阱深度的变化而变化。故而使得空穴注入效率和电子阻挡层对电子的限制作用在不同势阱深度的LED样品中有所不同。