A direct tunneling model through gate dielectric s in CMOS devices in the frame of WKB approximation is reported.In the model,an im proved one-band effective mass approximation is used for the hole quantization, wher...A direct tunneling model through gate dielectric s in CMOS devices in the frame of WKB approximation is reported.In the model,an im proved one-band effective mass approximation is used for the hole quantization, where valence band mixing is taken into account.By comparing to the experiments, the model is demonstrated to be applicable to both electron and hole tunneling c urrents in CMOS devices.The effect of the dispersion in oxide energy gap on the tunneling current is also studied.This model can be further extended to study th e direct tunneling current in future high-k materials.展开更多
We theoretically present the results for a scanning tunneling transport between a metallic tip and a Kondo lattice.We calculate the density of states(DOS)and the tunneling current and differential conductance(DC)under...We theoretically present the results for a scanning tunneling transport between a metallic tip and a Kondo lattice.We calculate the density of states(DOS)and the tunneling current and differential conductance(DC)under different conduction-fermion band hybridization and temperature in the Kondo lattice.It is found that the hybridization strength and temperature give asymmetric coherent peaks in the DOS separated by the Fermi energy.The corresponding current and DC intensity depend on the temperature and quantum interference effect among the c-electron and f-electron states in the Kondo lattice.展开更多
文摘A direct tunneling model through gate dielectric s in CMOS devices in the frame of WKB approximation is reported.In the model,an im proved one-band effective mass approximation is used for the hole quantization, where valence band mixing is taken into account.By comparing to the experiments, the model is demonstrated to be applicable to both electron and hole tunneling c urrents in CMOS devices.The effect of the dispersion in oxide energy gap on the tunneling current is also studied.This model can be further extended to study th e direct tunneling current in future high-k materials.
基金Supported by the National Natural Science Foundation of China under Grant No.11547203the Research Project of Education Department in Sichuan Province of China under Grant No.15ZB0457
文摘We theoretically present the results for a scanning tunneling transport between a metallic tip and a Kondo lattice.We calculate the density of states(DOS)and the tunneling current and differential conductance(DC)under different conduction-fermion band hybridization and temperature in the Kondo lattice.It is found that the hybridization strength and temperature give asymmetric coherent peaks in the DOS separated by the Fermi energy.The corresponding current and DC intensity depend on the temperature and quantum interference effect among the c-electron and f-electron states in the Kondo lattice.