近年来,随着科学技术的不断创新,各种组学(Omics)技术应运而生.1999年Nicholson首次给出了代谢组学(Metabolomics)的完整定义,是研究在内、外因素作用下,生物体所含内源性小分子代谢物(相对分子质量小于1 000)在种类和数量上的动...近年来,随着科学技术的不断创新,各种组学(Omics)技术应运而生.1999年Nicholson首次给出了代谢组学(Metabolomics)的完整定义,是研究在内、外因素作用下,生物体所含内源性小分子代谢物(相对分子质量小于1 000)在种类和数量上的动态变化规律以及生理、病理变化的一门技术[1].代谢组学主要包括3个检测平台,分别为气相色谱质谱联用,液相色谱质谱联用和核磁共振技术(nuclear magnetic resonance,NMR).其中,NMR已被广泛应用于生命科学的各个领域.展开更多
The progress of science is in part attributed to the development of new methodologies. The application of mass spectrometry (MS) and nuclear magnetic resonance (NMR) in the study of biological macromolecules is such a...The progress of science is in part attributed to the development of new methodologies. The application of mass spectrometry (MS) and nuclear magnetic resonance (NMR) in the study of biological macromolecules is such a representative example, which is the subject of this year’s Nobel prize award in chemistry shared by three scientists. The works include the development of soft desorption ionization methods for mass spectrometric analysis of biological macromolecules and the development of NMR for determining the three-dimensional structure of biological macromolecules in solution. These developments revolutionized the analytical methods for biomolecules such as proteins and facilitate the study of biological macromolecules so much enough to have deep effects on the whole life sciences.展开更多
文摘近年来,随着科学技术的不断创新,各种组学(Omics)技术应运而生.1999年Nicholson首次给出了代谢组学(Metabolomics)的完整定义,是研究在内、外因素作用下,生物体所含内源性小分子代谢物(相对分子质量小于1 000)在种类和数量上的动态变化规律以及生理、病理变化的一门技术[1].代谢组学主要包括3个检测平台,分别为气相色谱质谱联用,液相色谱质谱联用和核磁共振技术(nuclear magnetic resonance,NMR).其中,NMR已被广泛应用于生命科学的各个领域.
文摘The progress of science is in part attributed to the development of new methodologies. The application of mass spectrometry (MS) and nuclear magnetic resonance (NMR) in the study of biological macromolecules is such a representative example, which is the subject of this year’s Nobel prize award in chemistry shared by three scientists. The works include the development of soft desorption ionization methods for mass spectrometric analysis of biological macromolecules and the development of NMR for determining the three-dimensional structure of biological macromolecules in solution. These developments revolutionized the analytical methods for biomolecules such as proteins and facilitate the study of biological macromolecules so much enough to have deep effects on the whole life sciences.