This paper investigated the electrodeposition of sulfur on polycrystalline platinum from sulfide polluted brine. Anodic polarization, potentiostatic and electrochemical impedance spectroscopy (EIS) techniques were p...This paper investigated the electrodeposition of sulfur on polycrystalline platinum from sulfide polluted brine. Anodic polarization, potentiostatic and electrochemical impedance spectroscopy (EIS) techniques were performed. The slope of Warburg straight line in Nyquiest plot of the EIS spectra performed at 0.0 V indicates diffusion control mechanism of the electrodeposition process. At 0.5 V the Rp (determined from EIS measurements) increased rapidly with time indicating more sulfur deposition and more passivation of platinum surface. Samples subjected to potentiostatic experiments at 0.4, 0.9 and 1.0 V were investigated under Scanning Electron Microscope (SEM). SEM images reveal the deposition of sulfur on the sample surfaces. The degree of sulfur deposit coverage and its morphology depend on both the potential and time of deposition.展开更多
文摘This paper investigated the electrodeposition of sulfur on polycrystalline platinum from sulfide polluted brine. Anodic polarization, potentiostatic and electrochemical impedance spectroscopy (EIS) techniques were performed. The slope of Warburg straight line in Nyquiest plot of the EIS spectra performed at 0.0 V indicates diffusion control mechanism of the electrodeposition process. At 0.5 V the Rp (determined from EIS measurements) increased rapidly with time indicating more sulfur deposition and more passivation of platinum surface. Samples subjected to potentiostatic experiments at 0.4, 0.9 and 1.0 V were investigated under Scanning Electron Microscope (SEM). SEM images reveal the deposition of sulfur on the sample surfaces. The degree of sulfur deposit coverage and its morphology depend on both the potential and time of deposition.