AIM:To investigate the biological features of hepatitis B virus(HBV)-transfected HepG2.2.15 cells. METHODS:The cell ultrastructure,cell cycle and apoptosis,and the abilities of proliferation and invasion of HBV-transf...AIM:To investigate the biological features of hepatitis B virus(HBV)-transfected HepG2.2.15 cells. METHODS:The cell ultrastructure,cell cycle and apoptosis,and the abilities of proliferation and invasion of HBV-transfected HepG2.2.15 and the parent HepG2 cells were examined by electron microscopy,flow cytometry, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and trans-well assay.Oncogenicity of the two cell lines was compared via subcutaneous injection and orthotopic injection or implantation in nude mice,and the pathological analysis of tumor formation was performed.Two cytoskeletal proteins were detected by Western blotting. RESULTS:Compared with HepG2 cells,HepG2.2.15 cells showed organelle degeneration and filopodia disappearance under electron microscope.HepG2.2.15 cells proliferated and migrated slowly in vitro,and hardly formed tumor and lung metastasis in nude mice.Flow cytometry showed that the majority of HepG2.2.15 cells were arrested in G1 phase,and apoptosis was minor in both cell lines.Furthermore,the levels of cytoskeletal proteins F-actin and Ezrin were decreased in HepG2.2.15 cells. CONCLUSION:HepG2.2.15 cells demonstrated a lower proliferation and invasion ability than the HepG2 cells due to HBV transfection.展开更多
The Xialu chert, which contains abundant biological information, were investigated by major element analysis, micro-Raman, SEM and EPMA. The results show that SiO2 content of chert is 84.12%-93.08%, averaging 89.84%. ...The Xialu chert, which contains abundant biological information, were investigated by major element analysis, micro-Raman, SEM and EPMA. The results show that SiO2 content of chert is 84.12%-93.08%, averaging 89.84%. The close packed structures of low degree crystallinity of quartz indicate the hydrothermal origin. SiO2 of modern hot springs exhibit loose silica pellets and nodular, beaded structures. Under polarization microscope, the presence of biological skeleton structures indicate that biological activities are involved in the hydrothermal deposition, which correspond to the geochemical characteristics: w(SiO2)/ w(K2O+Na2O), w(SiO2)/w(Al2O3) and w(SiO2)/w(MgO), with average values of 295.29, 68.88 and 284.45, respectively. SiO2 is enriched in the organism(radiolarian) centers, the degree order of SiO2 within the biologic structures is much higher than that of outside. The impurity minerals albites are formed earlier than the original deposition. Kaolinites, feldspars and mixture of organic materials display lower degree of crystallinities and accumulate as vermicular aggregates.展开更多
Constructing potential anodes for sodium-ion batteries(SIBs)with a wide temperature property has captured enormous interests in recent years.Fe1-xS,a zero-band gap material confirmed by density states calculation,is a...Constructing potential anodes for sodium-ion batteries(SIBs)with a wide temperature property has captured enormous interests in recent years.Fe1-xS,a zero-band gap material confirmed by density states calculation,is an ideal electrode for fast energy storage on account of its low cost and high theoretical capacity.Herein,Fe1-xS nanosheet wrapped by nitrogen-doped carbon(Fe1-xS@NC)is engineered through a post-sulfidation strategy using Fe-based metal-organic framework(Fe-MOF)as the precursor.The obtained Fe1-xS@NC agaric-like structure can well shorten the charge diffusion pathway,and significantly enhance the ionic/electronic conductivities and the reaction kinetics.As expected,the Fe1-xS@NC electrode,as a prospective SIB anode,delivers a desirable capacity up to 510.2 mA h g^-1 at a high rate of8000 mA g^-1.Additionally,even operated at low temperatures of 0 and-25°C,high reversible capacities of 387.1 and 223.4 mA h g^-1 can still be obtained at 2000 mA g^-1,respectively,indicating its huge potential use at harsh temperatures.More noticeably,the full battery made by the Fe1-xS@NC anode and Na3 V2(PO4)2 O2 F cathode achieves a remarkable rate capacity(186.8 mA h g^-1 at 2000 m A g^-1)and an impressive cycle performance(183.6 m A h g^-1 after 100 cycles at700 mA g^-1)between 0.3 and 3.8 V.Such excellent electrochemical performance is mainly contributed by its pseudocapacitive-dominated behavior,which brings fast electrode kinetics and robust structural stability to the whole electrode.展开更多
Conjugated polymer photocatalysts have received extensive attention in the field of photocatalytic hydrogen evolution owing to their tunable molecular structures and electronic properties.Herein,we developed three don...Conjugated polymer photocatalysts have received extensive attention in the field of photocatalytic hydrogen evolution owing to their tunable molecular structures and electronic properties.Herein,we developed three donoracceptor(D-A)type thiophene-containing narrow-band-gap conjugated polymers with pyrene as a donor and different fused-thiophene derivatives as acceptors via direct C-H arylation coupling polymerization.It was found that the band gap of the polymers can be tuned by adjusting the number of the fused-thiophene rings.The visible light absorption range can be extended by increasing the number of the thiophene rings,the planar molecular structure for both donor and acceptor units facilitates the charge transmission along the polymer skeleton,and the D-A type polymer structure promotes the dissociation of photo-induced electrons and holes.As a result,a high photocatalytic hydrogen evolution rate of 33.07 mmol h^(−1)g^(−1) was obtained by PyTP-2 with an optimized molecular structure under visible light irradiation(λ>420 nm)without the aid of Pt co-catalyst.In addition,PyTP-2 also shows a photocatalytic activity for oxygen evolution with an average oxygen evolution rate of 58.37µmol h^(−1)g^(−1).展开更多
基金Supported by Graduate Innovation Foundation of Harbin Medical University No.HCXB2010010Key Technology Project of Heilongjiang Science and Technology Department,No.ZJY04-0102
文摘AIM:To investigate the biological features of hepatitis B virus(HBV)-transfected HepG2.2.15 cells. METHODS:The cell ultrastructure,cell cycle and apoptosis,and the abilities of proliferation and invasion of HBV-transfected HepG2.2.15 and the parent HepG2 cells were examined by electron microscopy,flow cytometry, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and trans-well assay.Oncogenicity of the two cell lines was compared via subcutaneous injection and orthotopic injection or implantation in nude mice,and the pathological analysis of tumor formation was performed.Two cytoskeletal proteins were detected by Western blotting. RESULTS:Compared with HepG2 cells,HepG2.2.15 cells showed organelle degeneration and filopodia disappearance under electron microscope.HepG2.2.15 cells proliferated and migrated slowly in vitro,and hardly formed tumor and lung metastasis in nude mice.Flow cytometry showed that the majority of HepG2.2.15 cells were arrested in G1 phase,and apoptosis was minor in both cell lines.Furthermore,the levels of cytoskeletal proteins F-actin and Ezrin were decreased in HepG2.2.15 cells. CONCLUSION:HepG2.2.15 cells demonstrated a lower proliferation and invasion ability than the HepG2 cells due to HBV transfection.
基金Projects(41273040,41303025)supported by the National Natural Science Foundation of China
文摘The Xialu chert, which contains abundant biological information, were investigated by major element analysis, micro-Raman, SEM and EPMA. The results show that SiO2 content of chert is 84.12%-93.08%, averaging 89.84%. The close packed structures of low degree crystallinity of quartz indicate the hydrothermal origin. SiO2 of modern hot springs exhibit loose silica pellets and nodular, beaded structures. Under polarization microscope, the presence of biological skeleton structures indicate that biological activities are involved in the hydrothermal deposition, which correspond to the geochemical characteristics: w(SiO2)/ w(K2O+Na2O), w(SiO2)/w(Al2O3) and w(SiO2)/w(MgO), with average values of 295.29, 68.88 and 284.45, respectively. SiO2 is enriched in the organism(radiolarian) centers, the degree order of SiO2 within the biologic structures is much higher than that of outside. The impurity minerals albites are formed earlier than the original deposition. Kaolinites, feldspars and mixture of organic materials display lower degree of crystallinities and accumulate as vermicular aggregates.
基金financially supported by the National Natural Science Foundation of China (21873018, 21573036 and 21274017)the open project of Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis (130028655)
文摘Constructing potential anodes for sodium-ion batteries(SIBs)with a wide temperature property has captured enormous interests in recent years.Fe1-xS,a zero-band gap material confirmed by density states calculation,is an ideal electrode for fast energy storage on account of its low cost and high theoretical capacity.Herein,Fe1-xS nanosheet wrapped by nitrogen-doped carbon(Fe1-xS@NC)is engineered through a post-sulfidation strategy using Fe-based metal-organic framework(Fe-MOF)as the precursor.The obtained Fe1-xS@NC agaric-like structure can well shorten the charge diffusion pathway,and significantly enhance the ionic/electronic conductivities and the reaction kinetics.As expected,the Fe1-xS@NC electrode,as a prospective SIB anode,delivers a desirable capacity up to 510.2 mA h g^-1 at a high rate of8000 mA g^-1.Additionally,even operated at low temperatures of 0 and-25°C,high reversible capacities of 387.1 and 223.4 mA h g^-1 can still be obtained at 2000 mA g^-1,respectively,indicating its huge potential use at harsh temperatures.More noticeably,the full battery made by the Fe1-xS@NC anode and Na3 V2(PO4)2 O2 F cathode achieves a remarkable rate capacity(186.8 mA h g^-1 at 2000 m A g^-1)and an impressive cycle performance(183.6 m A h g^-1 after 100 cycles at700 mA g^-1)between 0.3 and 3.8 V.Such excellent electrochemical performance is mainly contributed by its pseudocapacitive-dominated behavior,which brings fast electrode kinetics and robust structural stability to the whole electrode.
基金financially supported by the National Natural Science Foundation of China(21574077 and 21304055)the Fundamental Research Funds for the Central Universities(GK202102005)。
文摘Conjugated polymer photocatalysts have received extensive attention in the field of photocatalytic hydrogen evolution owing to their tunable molecular structures and electronic properties.Herein,we developed three donoracceptor(D-A)type thiophene-containing narrow-band-gap conjugated polymers with pyrene as a donor and different fused-thiophene derivatives as acceptors via direct C-H arylation coupling polymerization.It was found that the band gap of the polymers can be tuned by adjusting the number of the fused-thiophene rings.The visible light absorption range can be extended by increasing the number of the thiophene rings,the planar molecular structure for both donor and acceptor units facilitates the charge transmission along the polymer skeleton,and the D-A type polymer structure promotes the dissociation of photo-induced electrons and holes.As a result,a high photocatalytic hydrogen evolution rate of 33.07 mmol h^(−1)g^(−1) was obtained by PyTP-2 with an optimized molecular structure under visible light irradiation(λ>420 nm)without the aid of Pt co-catalyst.In addition,PyTP-2 also shows a photocatalytic activity for oxygen evolution with an average oxygen evolution rate of 58.37µmol h^(−1)g^(−1).