With the increasing requirement for the mechanical vibration and acoustic noise of the permanent magnet synchronous motor(PMSM)drive system,the demand for cogging torque reduction of PMSM has been considerably increas...With the increasing requirement for the mechanical vibration and acoustic noise of the permanent magnet synchronous motor(PMSM)drive system,the demand for cogging torque reduction of PMSM has been considerably increased.To solve the problem of oversized cogging torque of axial flux PMSM,a rotor topology with hybrid permanent magnet is proposed to weaken the cogging torque.Firstly,the expression of the cogging torque of the axial flux motor is derived,and the influence of the pole-arc ratio of the permanent magnet on the cogging torque is analyzed.Secondly,the rotor structure with hybrid permanent magnet is adopted to reduce the cogging torque.According to the analytical analysis,the constraints of the size and pole-arc ratio between the hybrid permanent magnets are obtained,and the two permanent magnets related to the minimum cogging torque are determined.And the analysis results are verified by the finite element simulation.Furthermore,the motor performance with and without the hybrid permanent magnet is compared with each other.Finally,the cogging torque is significantly reduced by adopting a rotor structure with hybrid permanent magnets.展开更多
This paper presents an experimental investigation on flow field induced by a dielectric barrier discharge(DBD) plasma actuator with serrated electrodes in still air to further improve its flow control effectiveness. F...This paper presents an experimental investigation on flow field induced by a dielectric barrier discharge(DBD) plasma actuator with serrated electrodes in still air to further improve its flow control effectiveness. For comparison, the actuator with widely used linear electrodes was also studied. Experiments were carried out using 2D particle image velocimetry. Particular attention was given to the flow topology, discharge phenomenon, and vortex formation mechanism. Results showed that a 2D wall jet was induced by the linear actuators, whereas the plasma actuators with serrated electrode introduced a series of streamwise vorticities, which might benefit flow control(e.g., enhancing the momentum transport in the separated boundary flow). In addition, the mechanism of 3D flow topology induced by the serrated DBD actuator was analyzed in detail.展开更多
基金supported by the Natural Science Foundation of Hubei Province(No.2019 CFB759)。
文摘With the increasing requirement for the mechanical vibration and acoustic noise of the permanent magnet synchronous motor(PMSM)drive system,the demand for cogging torque reduction of PMSM has been considerably increased.To solve the problem of oversized cogging torque of axial flux PMSM,a rotor topology with hybrid permanent magnet is proposed to weaken the cogging torque.Firstly,the expression of the cogging torque of the axial flux motor is derived,and the influence of the pole-arc ratio of the permanent magnet on the cogging torque is analyzed.Secondly,the rotor structure with hybrid permanent magnet is adopted to reduce the cogging torque.According to the analytical analysis,the constraints of the size and pole-arc ratio between the hybrid permanent magnets are obtained,and the two permanent magnets related to the minimum cogging torque are determined.And the analysis results are verified by the finite element simulation.Furthermore,the motor performance with and without the hybrid permanent magnet is compared with each other.Finally,the cogging torque is significantly reduced by adopting a rotor structure with hybrid permanent magnets.
基金supported by the National Natural Science Foundation of China (51222606)
文摘This paper presents an experimental investigation on flow field induced by a dielectric barrier discharge(DBD) plasma actuator with serrated electrodes in still air to further improve its flow control effectiveness. For comparison, the actuator with widely used linear electrodes was also studied. Experiments were carried out using 2D particle image velocimetry. Particular attention was given to the flow topology, discharge phenomenon, and vortex formation mechanism. Results showed that a 2D wall jet was induced by the linear actuators, whereas the plasma actuators with serrated electrode introduced a series of streamwise vorticities, which might benefit flow control(e.g., enhancing the momentum transport in the separated boundary flow). In addition, the mechanism of 3D flow topology induced by the serrated DBD actuator was analyzed in detail.