This paper focuses on flow structures of the wing-wake interaction between the hind wing and the wake of the forewing in hovering flight of a dragonfly since there are arguments whether the wing-wake interaction is us...This paper focuses on flow structures of the wing-wake interaction between the hind wing and the wake of the forewing in hovering flight of a dragonfly since there are arguments whether the wing-wake interaction is useful or not.A mechanical flapping model with two tandem wings is used to study the interaction.In the device,two identical simplified model wings are mounted to the flapping model and they are both scaled up to keep the Reynolds number similar to those of dragonfly in hovering flight since our experiment is conducted in a water tank.The kinetic pattern of dragonfly(Aeschna juncea) is chosen because of its special interesting asymmetry.A multi-slice phase-locked stereo particle image velocimetry(PIV) system is used to record flow structures around the hind wing at the mid downstroke(t/T=0.25) and the mid upstroke(t/T=0.75).To make comparison of the flow field between with and without the influence of the wake,flow structures around a single flapping wing(hind wing without the existence of the forewing) at these two stroke phases are also recorded.A local vortex identification scheme called swirling strength is applied to determine the vortices around the wing and they are visualized with the iso-surface of swirling strength.This paper also presents contour lines of z at each spanwise position of the hind wing,the vortex core position of the leading edge vortex(LEV) of hind wing with respect to the upper surface of hind wing,the circulation of the hind wing LEV at each spanwise position and so on.Experimental results show that dimension and strength of the hind wing LEV are impaired at the mid stroke in comparison with the single wing LEV because of the downwash from the forewing.Our results also reveal that a wake vortex from the forewing traverses the upper surface of the hind wing at the mid downstroke and its distance to the upper surface is about 40% of the wing chord length.At the instant,the distance of the hind wing LEV to the upper surface is about 20% of the wing chord length.Thus,there must be a wing-wake interaction mechanism that makes the wake vortex become an additional LEV of the hind wing and it can partly compensate the hind wing for its lift loss caused by the downwash from the forewing.展开更多
We report the observation of mirror mode structures by Cluster spacecraft at around X^-16 RE in the Earth’s magnetotail.The wavelength of the mirror structure is larger than 7000 km,corresponding to tens of ion gyror...We report the observation of mirror mode structures by Cluster spacecraft at around X^-16 RE in the Earth’s magnetotail.The wavelength of the mirror structure is larger than 7000 km,corresponding to tens of ion gyroradii.Features of the mirror structures are similar to those detected in the magnetosheath:the anti-correlation between the magnetic field strength and plasma density,zero phase velocity in the plasma rest frame and linear polarization.The structures were observed in a region bounded by two dipolarizations during a substorm intensification.Thus,the dipolarization process may provide a plasma condition facilitating the growth of the mirror mode structures.Another interesting feature is the electron dynamics within the mirror structures.Thermal electron energy flux has an enhancement at 0°and 180°pitch angles inside the magnetic dips of the first three mirror structures and an enhancement at 90°pitch angle inside the magnetic dip of the last structure.The different electron distribution inside the mirror structures might be a result of different evolution stages of the mirror wave.The last structure may be in the nonlinear stage of the mirror instability,whereas the three others with quasi-sinusoidal waveforms may be in the linear stage.In addition,we found that intense whistler waves were confined within the magnetic dips.We conjecture that whistler waves observed in the first three dips were generated in a remote region,then they were trapped in the mirror mode troughs and transported toward the spacecraft;while the whistler wave detected in the last dip was excited locally by the electron anisotropy instability.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 10772017,10472011)
文摘This paper focuses on flow structures of the wing-wake interaction between the hind wing and the wake of the forewing in hovering flight of a dragonfly since there are arguments whether the wing-wake interaction is useful or not.A mechanical flapping model with two tandem wings is used to study the interaction.In the device,two identical simplified model wings are mounted to the flapping model and they are both scaled up to keep the Reynolds number similar to those of dragonfly in hovering flight since our experiment is conducted in a water tank.The kinetic pattern of dragonfly(Aeschna juncea) is chosen because of its special interesting asymmetry.A multi-slice phase-locked stereo particle image velocimetry(PIV) system is used to record flow structures around the hind wing at the mid downstroke(t/T=0.25) and the mid upstroke(t/T=0.75).To make comparison of the flow field between with and without the influence of the wake,flow structures around a single flapping wing(hind wing without the existence of the forewing) at these two stroke phases are also recorded.A local vortex identification scheme called swirling strength is applied to determine the vortices around the wing and they are visualized with the iso-surface of swirling strength.This paper also presents contour lines of z at each spanwise position of the hind wing,the vortex core position of the leading edge vortex(LEV) of hind wing with respect to the upper surface of hind wing,the circulation of the hind wing LEV at each spanwise position and so on.Experimental results show that dimension and strength of the hind wing LEV are impaired at the mid stroke in comparison with the single wing LEV because of the downwash from the forewing.Our results also reveal that a wake vortex from the forewing traverses the upper surface of the hind wing at the mid downstroke and its distance to the upper surface is about 40% of the wing chord length.At the instant,the distance of the hind wing LEV to the upper surface is about 20% of the wing chord length.Thus,there must be a wing-wake interaction mechanism that makes the wake vortex become an additional LEV of the hind wing and it can partly compensate the hind wing for its lift loss caused by the downwash from the forewing.
基金supported by the National Natural Science Foundation of China(Grants Nos.41174147,41274170,41331070)Science Foundation of Jiangxi Province(Grants No.20122BAB212002)the Fundamental Research Funds for the Central Universities(Grant No.2012212020206)
文摘We report the observation of mirror mode structures by Cluster spacecraft at around X^-16 RE in the Earth’s magnetotail.The wavelength of the mirror structure is larger than 7000 km,corresponding to tens of ion gyroradii.Features of the mirror structures are similar to those detected in the magnetosheath:the anti-correlation between the magnetic field strength and plasma density,zero phase velocity in the plasma rest frame and linear polarization.The structures were observed in a region bounded by two dipolarizations during a substorm intensification.Thus,the dipolarization process may provide a plasma condition facilitating the growth of the mirror mode structures.Another interesting feature is the electron dynamics within the mirror structures.Thermal electron energy flux has an enhancement at 0°and 180°pitch angles inside the magnetic dips of the first three mirror structures and an enhancement at 90°pitch angle inside the magnetic dip of the last structure.The different electron distribution inside the mirror structures might be a result of different evolution stages of the mirror wave.The last structure may be in the nonlinear stage of the mirror instability,whereas the three others with quasi-sinusoidal waveforms may be in the linear stage.In addition,we found that intense whistler waves were confined within the magnetic dips.We conjecture that whistler waves observed in the first three dips were generated in a remote region,then they were trapped in the mirror mode troughs and transported toward the spacecraft;while the whistler wave detected in the last dip was excited locally by the electron anisotropy instability.