Based on Pomeron exchange model, elastic production of vector meson in electro-proton interaction is investigated with both linear and non-linear Pomeron trajectory. A numerical calculation for J/psi production is per...Based on Pomeron exchange model, elastic production of vector meson in electro-proton interaction is investigated with both linear and non-linear Pomeron trajectory. A numerical calculation for J/psi production is performed. The effect of the energy scale so and photon virtuality Q(2) on differential cross section are also predicted. A good agreement with experimental data is obtained. Our conclusions are that the Pomeron exchange model is a successful description of J/psi electro-production, the dependence of the differential cross sections on Q2 is negligible, the linear trajectory is a good approximation to non-linearity of the Pomeron trajectory, and the value of the energy scale parameter so is dependent on the momentum transfer, namely its effect is moderate at low momentum transfer but it causes no difference at high momentum transfer vertical bar t vertical bar >= 1.25 GeV2.展开更多
This article describes comparison of the anchoring effect on electronic properties of the helicene-like bibenzothiophene between o-carborane and 5,6-dicarba-nido-decaborane. The o-carborane and nido-decaborane-fused b...This article describes comparison of the anchoring effect on electronic properties of the helicene-like bibenzothiophene between o-carborane and 5,6-dicarba-nido-decaborane. The o-carborane and nido-decaborane-fused bibenzothiophenes were simultaneously obtained in the same reaction and successfully isolated. Initially, the X-ray single crystal analysis revealed that the helicene-like distorted structure was realized in the nido-decaborane-fused bibenzothiophene. From optical measurements in the solution state, distinct different characteristics depending on the type of anchors were observed. It was summarized that the absorption and luminescent properties originated from weak π-conjugation at the bibenzothiophene moiety in the o-carboranefused compound were obtained, whereas robust π-conjugation and significant emission from the intramolecular charge transfer state were detected from the nido-decaborane-fused compound. These data can be explained by the theoretical results that π-conjugation was restrictedly developed within the bibenzothiophene moiety in frontier orbitals of the o-carborane-fused compound. In contrast, π-conjugation can be constructed even through the distorted bibenzothiophene because of the nido-decaborane unit. Moreover, the intramolecular charge transfer state should be realized because of electronic interaction involving the nido-decaborane unit in the excited state. Furthermore, it was demonstrated that the nido-decaborane-fused compound possessed solid-state emission and mechanochromic luminescent properties. The π-conjugation on the distorted structure supported by the nido-decaborane anchor should play a significant role in suppressing aggregation-caused quenching followed by presenting solid-state emission with stimuli responsiveness.展开更多
The structural,energetic and electronic properties of chiral(n,m)(3≤n≤6,n/2≤m≤n)single-wall copper nanotubes(CuNTs)have been investigated by using projector-augmented wave method based on density-functional theory...The structural,energetic and electronic properties of chiral(n,m)(3≤n≤6,n/2≤m≤n)single-wall copper nanotubes(CuNTs)have been investigated by using projector-augmented wave method based on density-functional theory.The(4,3)CuNT is energetically stable and should be observed experimentally in both free-standing and tip-suspended conditions,whereas the(5,5)and(6,4)CuNTs should be observed in free-standing and tip-suspended conditions,respectively.The number of conductance channels in the CuNTs does not always correspond to the number of atomic strands comprising the nanotube.Charge density contours show that there is an enhanced interatomic interaction in CuNTs compared with Cu bulk.Current transporting states display different periods and chirality,the combined effects of which lead to weaker chiral currents on CuNTs.展开更多
Protonation and alkali-metal cation adduction are the most important ionization processes in soft-ionization mass spectrometry.Studies on the fragmentation mechanism of protonated and alkali-metal-cationized compounds...Protonation and alkali-metal cation adduction are the most important ionization processes in soft-ionization mass spectrometry.Studies on the fragmentation mechanism of protonated and alkali-metal-cationized compounds in tandem mass spectrometry are essential and helpful for structural analysis.In some cases,it was often observed that a compound attached by different alkali-metal cations(or proton)exhibits similar fragmentation patterns but the relative abundances of product ions are different.This difference was considered to derive from the different electrostatic interactions of alkali-metal cations(or the bonded effect of proton)with the analyte.The alkali-metal cation with a smaller ionic radius shows stronger electrostatic interaction with the molecule because of its higher charge density.In addition,the bonded effect of the proton is stronger than the electrostatic interaction of the alkali-metal cation.In the present study,which used McLafferty-type rearrangements of even-electron ions([M+Cat]+,Cat=H,Li,Na,K)as model reactions,the effect of cation size in mass spectrometric fragmentation reactions is highlighted.These considerations were also successfully applied to interpret the similar but distinct fragmentation behavior of proton and alkali-metal cation adducts of a synthetic compound(2-(acetamido(phenyl)methyl)-3-oxobutanoate)and a drug(entecavir).展开更多
We study the effect of two non-interacting impurity atoms near by a one-dimensional nanowire, which is modeled as a tight-binding hopping model. The virtual single-electron hopping between two impurities will induce a...We study the effect of two non-interacting impurity atoms near by a one-dimensional nanowire, which is modeled as a tight-binding hopping model. The virtual single-electron hopping between two impurities will induce an additional energy depending on the distance of two impurities, which gives a electronic Casimir–Polder effect. We find that the Casimir–Polder force between the two impurities decreases with the impurity-impurity distance exponentially.And the effects of nanowire and finite temperature on the Casimir–Polder force are also discussed in detail, respectively.展开更多
文摘Based on Pomeron exchange model, elastic production of vector meson in electro-proton interaction is investigated with both linear and non-linear Pomeron trajectory. A numerical calculation for J/psi production is performed. The effect of the energy scale so and photon virtuality Q(2) on differential cross section are also predicted. A good agreement with experimental data is obtained. Our conclusions are that the Pomeron exchange model is a successful description of J/psi electro-production, the dependence of the differential cross sections on Q2 is negligible, the linear trajectory is a good approximation to non-linearity of the Pomeron trajectory, and the value of the energy scale parameter so is dependent on the momentum transfer, namely its effect is moderate at low momentum transfer but it causes no difference at high momentum transfer vertical bar t vertical bar >= 1.25 GeV2.
基金supported by Konica Minolta Science and Technology Foundation (for K.T.)a Grant-in-Aid for Scientific Research on Innovative Areas "New Polymeric Materials Based on Element-Blocks (No.2401)" (JP24102013)
文摘This article describes comparison of the anchoring effect on electronic properties of the helicene-like bibenzothiophene between o-carborane and 5,6-dicarba-nido-decaborane. The o-carborane and nido-decaborane-fused bibenzothiophenes were simultaneously obtained in the same reaction and successfully isolated. Initially, the X-ray single crystal analysis revealed that the helicene-like distorted structure was realized in the nido-decaborane-fused bibenzothiophene. From optical measurements in the solution state, distinct different characteristics depending on the type of anchors were observed. It was summarized that the absorption and luminescent properties originated from weak π-conjugation at the bibenzothiophene moiety in the o-carboranefused compound were obtained, whereas robust π-conjugation and significant emission from the intramolecular charge transfer state were detected from the nido-decaborane-fused compound. These data can be explained by the theoretical results that π-conjugation was restrictedly developed within the bibenzothiophene moiety in frontier orbitals of the o-carborane-fused compound. In contrast, π-conjugation can be constructed even through the distorted bibenzothiophene because of the nido-decaborane unit. Moreover, the intramolecular charge transfer state should be realized because of electronic interaction involving the nido-decaborane unit in the excited state. Furthermore, it was demonstrated that the nido-decaborane-fused compound possessed solid-state emission and mechanochromic luminescent properties. The π-conjugation on the distorted structure supported by the nido-decaborane anchor should play a significant role in suppressing aggregation-caused quenching followed by presenting solid-state emission with stimuli responsiveness.
基金supported by the State Key Development for Basic Research of China(Grant No.2010CB631002) the National Natural Science Foundation of China(Grant Nos.51071098,11104175 and 11214216)
文摘The structural,energetic and electronic properties of chiral(n,m)(3≤n≤6,n/2≤m≤n)single-wall copper nanotubes(CuNTs)have been investigated by using projector-augmented wave method based on density-functional theory.The(4,3)CuNT is energetically stable and should be observed experimentally in both free-standing and tip-suspended conditions,whereas the(5,5)and(6,4)CuNTs should be observed in free-standing and tip-suspended conditions,respectively.The number of conductance channels in the CuNTs does not always correspond to the number of atomic strands comprising the nanotube.Charge density contours show that there is an enhanced interatomic interaction in CuNTs compared with Cu bulk.Current transporting states display different periods and chirality,the combined effects of which lead to weaker chiral currents on CuNTs.
基金financially supported by the National Natural Science Foundation of China(21025207,21372199)
文摘Protonation and alkali-metal cation adduction are the most important ionization processes in soft-ionization mass spectrometry.Studies on the fragmentation mechanism of protonated and alkali-metal-cationized compounds in tandem mass spectrometry are essential and helpful for structural analysis.In some cases,it was often observed that a compound attached by different alkali-metal cations(or proton)exhibits similar fragmentation patterns but the relative abundances of product ions are different.This difference was considered to derive from the different electrostatic interactions of alkali-metal cations(or the bonded effect of proton)with the analyte.The alkali-metal cation with a smaller ionic radius shows stronger electrostatic interaction with the molecule because of its higher charge density.In addition,the bonded effect of the proton is stronger than the electrostatic interaction of the alkali-metal cation.In the present study,which used McLafferty-type rearrangements of even-electron ions([M+Cat]+,Cat=H,Li,Na,K)as model reactions,the effect of cation size in mass spectrometric fragmentation reactions is highlighted.These considerations were also successfully applied to interpret the similar but distinct fragmentation behavior of proton and alkali-metal cation adducts of a synthetic compound(2-(acetamido(phenyl)methyl)-3-oxobutanoate)and a drug(entecavir).
基金Supported by National Natural Science Foundation of China under Grants Nos.11175044,11105021,11204028,and 11547242the Natural Science Foundation of Jilin Province under Grant No.201115007+1 种基金the Foundation of Changchun University of Science and Technology under Grant No.XQNJJ-2015-04supported by China Postdoctoral Science Foundation under Grant No.2015M580966
文摘We study the effect of two non-interacting impurity atoms near by a one-dimensional nanowire, which is modeled as a tight-binding hopping model. The virtual single-electron hopping between two impurities will induce an additional energy depending on the distance of two impurities, which gives a electronic Casimir–Polder effect. We find that the Casimir–Polder force between the two impurities decreases with the impurity-impurity distance exponentially.And the effects of nanowire and finite temperature on the Casimir–Polder force are also discussed in detail, respectively.