Graphene is a promising material as both active components and additives in electrochemical energy storage devices. The properties of graphene strongly depend on the fabrication methods. The applications of reduced gr...Graphene is a promising material as both active components and additives in electrochemical energy storage devices. The properties of graphene strongly depend on the fabrication methods. The applications of reduced graphene oxide as electrode materials have been well studied and reviewed, but the using of "pristine" graphene as electrode material for energy storage is still a new topic. In this paper, we review state-of-the-art progress in the fabrication of "pristine" graphene by different methods and the electrochemical performance of graphene-based electrodes. The achievements in this area will be summarized and compared with the graphene oxide route in terms of cost, scalability, material properties and performances, and the challenges in these methods will be discussed as well.展开更多
The electric control of magnetic properties based on magnetoelectric effect is crucial for the development of future data storage devices.Here,based on first-principles calculations,a strong magnetoelectric effect is ...The electric control of magnetic properties based on magnetoelectric effect is crucial for the development of future data storage devices.Here,based on first-principles calculations,a strong magnetoelectric effect is proposed to effectively switch on/off the magnetic states as well as alter the in-plane/perpendicular easy axes of metal-phthalocyanine molecules(MPc)by reversing the electric polarization of the underlying two-dimensional(2D)ferroelectric a-In2Se3 substrate with the application of an external electric field.The mechanism originates from the different hybridization between the molecule and the ferroelectric substrate in which the different electronic states of surface Se layer play a dominant role.Moreover,the magnetic moments and magnetic anisotropy energies(MAE)of OsPc/In2Se3 can be further largely enhanced by a functionalized atom atop the OsPc molecule.The I-OsPc/In2Se3 system possesses large MAE up to 30 meV at both polarization directions,which is sufficient for room-temperature applications.These findings provide a feasible scheme to realize ferroelectric control of magnetic states in 2D limit,which have great potential for applications in nanoscale electronics and spintronics.展开更多
Lithium-sulfur batteries have been widely nominated as one of the most promising next-generation electrochemical storage systems due to its low cost, high capacity and energy density. However, its practical applicatio...Lithium-sulfur batteries have been widely nominated as one of the most promising next-generation electrochemical storage systems due to its low cost, high capacity and energy density. However, its practical application is still hindered by poor cycling lifetime, low Coulombic efficiency, instability and small scales. In the last decade, the electrochemical performances of the lithium-sulfur batteries have been improved by developing various novel nanoarchitectures as qualified hosts, and enhancing the sulfur loading with effective encapsulating strategies. The review summarizes the major sulfur cooperating strategies of cathodes based on background and latest progress of the lithium-sulfur batteries. The novel cooperating strategies of physical techniques and chemical synthesis techniques are discussed in detail. Based on the rich chemistry of sulfur, we paid more attention to the highlights of sulfur encapsulating strategies. Furthermore, the critical research directions in the coming future are proposed in the conclusion and outlook section.展开更多
Stimulus-responsive energy storage devices,which can respond to external stimuli,such as heat,pH,moisture,pressure,or electric field,have recently attracted intensive attention,aiming at the ever-increasing demand for...Stimulus-responsive energy storage devices,which can respond to external stimuli,such as heat,pH,moisture,pressure,or electric field,have recently attracted intensive attention,aiming at the ever-increasing demand for safe batteries and smart electronics.The most typical stimulus-responsive materials are polymers that can change their conformation by forming and destroying secondary forces,including hydrogen bonds and electrostatic interactions in response to external stimuli,accompanied by changes in the intrinsic properties such as conductivity and hydrophobicity.Although the applications of stimulus-responsive functions in rechargeable batteries are still in the early stage because of the complexity and compatibility of battery architectures,many new concepts of regulating the polymer structures upon applications of stimuli have already been developed.In this review,we discuss the recent progress of stimulus-responsive polymers on energy storage devices featuring thermal protection and intelligent scenarios,with a focus on the detailed structural transformations of polymers under a given stimulus and the corresponding changes in battery performance.Finally,we present perspectives on the current limitations and future research directions of stimulus-responsive polymers for energy storage devices.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51125009&91434118)the National Natural Science Foundation for Creative Research Group(Grant No.21221061)the Hundred Talents Program of the Chinese Academy of Sciences
文摘Graphene is a promising material as both active components and additives in electrochemical energy storage devices. The properties of graphene strongly depend on the fabrication methods. The applications of reduced graphene oxide as electrode materials have been well studied and reviewed, but the using of "pristine" graphene as electrode material for energy storage is still a new topic. In this paper, we review state-of-the-art progress in the fabrication of "pristine" graphene by different methods and the electrochemical performance of graphene-based electrodes. The achievements in this area will be summarized and compared with the graphene oxide route in terms of cost, scalability, material properties and performances, and the challenges in these methods will be discussed as well.
基金supported by the National Natural Science Foundation of China(11974307,61574123,11674299,and 11634011)National Key Research and Development Program of China(2017YFA0204904)+3 种基金Fundamental Research Funds for the Central Universities(2019FZA3004,WK2340000082,and WK2060190084)Zhejiang Provincial Natural Science Foundation(D19A040001)Anhui Initiative in Quantum Information Technologies(AHY170000)Strategic Priority Research Program of Chinese Academy of Sciences(XDB30000000)。
文摘The electric control of magnetic properties based on magnetoelectric effect is crucial for the development of future data storage devices.Here,based on first-principles calculations,a strong magnetoelectric effect is proposed to effectively switch on/off the magnetic states as well as alter the in-plane/perpendicular easy axes of metal-phthalocyanine molecules(MPc)by reversing the electric polarization of the underlying two-dimensional(2D)ferroelectric a-In2Se3 substrate with the application of an external electric field.The mechanism originates from the different hybridization between the molecule and the ferroelectric substrate in which the different electronic states of surface Se layer play a dominant role.Moreover,the magnetic moments and magnetic anisotropy energies(MAE)of OsPc/In2Se3 can be further largely enhanced by a functionalized atom atop the OsPc molecule.The I-OsPc/In2Se3 system possesses large MAE up to 30 meV at both polarization directions,which is sufficient for room-temperature applications.These findings provide a feasible scheme to realize ferroelectric control of magnetic states in 2D limit,which have great potential for applications in nanoscale electronics and spintronics.
基金supported by the National Natural Science Foundation of China(Grant No.21303038)Open Funds of the State Key Laboratory of Rare Earth Resource Utilization(Grant No.RERU2016004)+1 种基金Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry(Grant No.JZ2015JYLH0082)Qingdao Think-Tank Union Funds for Energy Storage(Grant No.JZ2016QTXM1097)
文摘Lithium-sulfur batteries have been widely nominated as one of the most promising next-generation electrochemical storage systems due to its low cost, high capacity and energy density. However, its practical application is still hindered by poor cycling lifetime, low Coulombic efficiency, instability and small scales. In the last decade, the electrochemical performances of the lithium-sulfur batteries have been improved by developing various novel nanoarchitectures as qualified hosts, and enhancing the sulfur loading with effective encapsulating strategies. The review summarizes the major sulfur cooperating strategies of cathodes based on background and latest progress of the lithium-sulfur batteries. The novel cooperating strategies of physical techniques and chemical synthesis techniques are discussed in detail. Based on the rich chemistry of sulfur, we paid more attention to the highlights of sulfur encapsulating strategies. Furthermore, the critical research directions in the coming future are proposed in the conclusion and outlook section.
基金financially supported by the National Key R&D Program of China(2017YFE0127600)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA22010600)+4 种基金the National Natural Science Foundation of China(21975271)the Key-Area Research and Development Program of Guangdong Province(2020B090919005)Shandong Natural Science Foundation(ZR2020ZD07 and ZR2021QB106)the financial support from the Youth Innovation Promotion Association of CAS(2019214)Shandong Energy Institute(SEI 1202127)。
文摘Stimulus-responsive energy storage devices,which can respond to external stimuli,such as heat,pH,moisture,pressure,or electric field,have recently attracted intensive attention,aiming at the ever-increasing demand for safe batteries and smart electronics.The most typical stimulus-responsive materials are polymers that can change their conformation by forming and destroying secondary forces,including hydrogen bonds and electrostatic interactions in response to external stimuli,accompanied by changes in the intrinsic properties such as conductivity and hydrophobicity.Although the applications of stimulus-responsive functions in rechargeable batteries are still in the early stage because of the complexity and compatibility of battery architectures,many new concepts of regulating the polymer structures upon applications of stimuli have already been developed.In this review,we discuss the recent progress of stimulus-responsive polymers on energy storage devices featuring thermal protection and intelligent scenarios,with a focus on the detailed structural transformations of polymers under a given stimulus and the corresponding changes in battery performance.Finally,we present perspectives on the current limitations and future research directions of stimulus-responsive polymers for energy storage devices.