β-Glucans are biomacromolecules that present biological properties of medical and pharmacological interest, The chemical modification of the primary structure of these carbohydrate biopolymers is a way to enhance or ...β-Glucans are biomacromolecules that present biological properties of medical and pharmacological interest, The chemical modification of the primary structure of these carbohydrate biopolymers is a way to enhance or achieve new biological properties. Acetylated derivatives of (1→6)-β-D-glucan (lasiodiplodan) with different degrees of substitution (0.48, 0.66, 1.03 and 1.26) were obtained and characterized by infra-red and NMR (nuclear magnetic resonance) spectroscopy, thermal analysis, X-ray diffraction and antioxidant capacity. Acetylation was confirmed by FT-IR, and βC NMR spectroscopy. Thermal analysis indicated that unmodified lasiodiplodan and the O-acetylated β-glucan derivative of degree of substitution 0.48 presented three stages of mass-loss, whereas acetylated derivatives of DS (degree of substitution) of 0.66, 1.03 and 1.26 presented four stages of mass-loss. X-ray diffractograms demonstrated that both native and acetylated lasiodiplodan presented crystalline regions in an amorphous polymeric matrix. Scanning electron microscopy revealed that O-acetylation promoted morphologic changes in the biopolymer according to the DS. Acetylation also contributed to improve antioxidant capacity.展开更多
The potential energy curves (PECs) of three low-lying electronic states (X^3∑, a^1△, and a^3△) of SO radical have been studied by ab initio quantum chemical method. The calcula- tions were carried out with the ...The potential energy curves (PECs) of three low-lying electronic states (X^3∑, a^1△, and a^3△) of SO radical have been studied by ab initio quantum chemical method. The calcula- tions were carried out with the full valence complete active space self-consistent field method followed by the highly accurate valence internally contracted multireference configuration in- teraction (MRCI) approach in combination with correlation-consistent basis sets. Effects of the core-valence correlation and relativistic corrections on the PECs are taken into account. The core-valence correlation correction is carried out with the cc-pCVDZ basis set. The way to consider the relativistic correction is to use the second-order Douglas-Kroll Hamiltonian approximation, and the correction is performed at the level of cc-pV5Z basis set. To obtain more reliable results, the PECs determined by the MRCI calculations are also corrected for size-extensivity errors by means of the Davidson modification (MRCI+Q). These PECs are extrapolated to the complete basis set limit by the two-point energy extrapolation scheme. With these PECs, the spectroscopic parameters are determined.展开更多
文摘β-Glucans are biomacromolecules that present biological properties of medical and pharmacological interest, The chemical modification of the primary structure of these carbohydrate biopolymers is a way to enhance or achieve new biological properties. Acetylated derivatives of (1→6)-β-D-glucan (lasiodiplodan) with different degrees of substitution (0.48, 0.66, 1.03 and 1.26) were obtained and characterized by infra-red and NMR (nuclear magnetic resonance) spectroscopy, thermal analysis, X-ray diffraction and antioxidant capacity. Acetylation was confirmed by FT-IR, and βC NMR spectroscopy. Thermal analysis indicated that unmodified lasiodiplodan and the O-acetylated β-glucan derivative of degree of substitution 0.48 presented three stages of mass-loss, whereas acetylated derivatives of DS (degree of substitution) of 0.66, 1.03 and 1.26 presented four stages of mass-loss. X-ray diffractograms demonstrated that both native and acetylated lasiodiplodan presented crystalline regions in an amorphous polymeric matrix. Scanning electron microscopy revealed that O-acetylation promoted morphologic changes in the biopolymer according to the DS. Acetylation also contributed to improve antioxidant capacity.
文摘The potential energy curves (PECs) of three low-lying electronic states (X^3∑, a^1△, and a^3△) of SO radical have been studied by ab initio quantum chemical method. The calcula- tions were carried out with the full valence complete active space self-consistent field method followed by the highly accurate valence internally contracted multireference configuration in- teraction (MRCI) approach in combination with correlation-consistent basis sets. Effects of the core-valence correlation and relativistic corrections on the PECs are taken into account. The core-valence correlation correction is carried out with the cc-pCVDZ basis set. The way to consider the relativistic correction is to use the second-order Douglas-Kroll Hamiltonian approximation, and the correction is performed at the level of cc-pV5Z basis set. To obtain more reliable results, the PECs determined by the MRCI calculations are also corrected for size-extensivity errors by means of the Davidson modification (MRCI+Q). These PECs are extrapolated to the complete basis set limit by the two-point energy extrapolation scheme. With these PECs, the spectroscopic parameters are determined.