Sodium-sulfur(Na-S)and potassium-sulfur(K-S)batteries for use at room temperature have received widespread attention because of the abundance and low cost of their raw materials and their high energy density.However,t...Sodium-sulfur(Na-S)and potassium-sulfur(K-S)batteries for use at room temperature have received widespread attention because of the abundance and low cost of their raw materials and their high energy density.However,their development is restricted by the shuttling of polysulfides,large volume expansion and poor conductivity.To overcome these obstacles,an effective approach is to use carbon-based materials with abundant space for the sulfur that has sulfiphilic sites to immobilize it,and a high electrical conductivity.Hollow carbon spheres(HCSs)with a controllable structure and composition are promising for this purpose.We consider recent progress in optimizing the electrochemical performance of Na-/K-S batteries by using these materials.First,the advantages of HCSs,their synthesis methods,and strategies for preparing HCSs/sulfur composite materials are reviewed.Second,the use of HCSs in Na-/K-S batteries,along with mechanisms underlying the resulting performance improvement,are discussed.Finally,prospects for the further development of HCSs for metal−S batteries are presented.展开更多
Zinc-ion capacitors(ZICs),which consist of a capacitor-type electrode and a battery-type electrode,not only possess the high power density of supercapacitors and the high energy density of batteries,but also have othe...Zinc-ion capacitors(ZICs),which consist of a capacitor-type electrode and a battery-type electrode,not only possess the high power density of supercapacitors and the high energy density of batteries,but also have other advantages such as abundant resources,high safety and environmental friendliness.However,they still face problems such as insufficient specific capacitance,a short cycling life,and narrow operating voltage and temperature ranges,which are hindering their practical use.We provide a comprehensive overview of the fundamental theory of carbon-based ZICs and summarize recent research progress from three perspectives:the carbon cathode,electrolyte and zinc anode.The influence of the structure and surface chemical properties of the carbon materials on the capacitive performance of ZICs is considered together with theoretical guidance for advancing their development and practical use.展开更多
The Ti−45Nb(wt.%)alloy properties were investigated in relation to its potential biomedical use.Laser surface modification was utilized to improve its performance in biological systems.As a result of the laser treatme...The Ti−45Nb(wt.%)alloy properties were investigated in relation to its potential biomedical use.Laser surface modification was utilized to improve its performance in biological systems.As a result of the laser treatment,(Ti,Nb)O scale was formed and various morphological features appeared on the alloy surface.The electrochemical behavior of Ti−45Nb alloy in simulated body conditions was evaluated and showed that the alloy was highly resistant to corrosion deterioration regardless of additional laser surface modification treatment.Nevertheless,the improved corrosion resistance after laser treatment was evident(the corrosion current density of the alloy before laser irradiation was 2.84×10^(−8)A/cm^(2),while that after laser treatment with 5 mJ was 0.65×10^(−8)A/cm^(2))and ascribed to the rapid formation of a complex and passivating bi-modal surface oxide layer.Alloy cytotoxicity and effects of the Ti−45Nb alloy laser surface modification on the MRC-5 cell viability,morphology,and proliferation were also investigated.The Ti−45Nb alloy showed no cytotoxic effect.Moreover,cells showed improved viability and adherence to the alloy surface after the laser irradiation treatment.The highest average cell viability of 115.37%was attained for the alloy laser-irradiated with 15 mJ.Results showed that the laser surface modification can be successfully utilized to significantly improve alloy performance in a biological environment.展开更多
Thin transparent oxide conducting films(TCOFs)of titanium and gallium substituted zinc oxide(TGZO)were fabricated via radio frequency(RF)magnetron sputtering technique.The effects of RF power on electrical,linear and ...Thin transparent oxide conducting films(TCOFs)of titanium and gallium substituted zinc oxide(TGZO)were fabricated via radio frequency(RF)magnetron sputtering technique.The effects of RF power on electrical,linear and nonlinear optical characteristics were investigated by Hall tester,Ultraviolet(UV)-visible spectrophotometer and optical characterization method.The results indicate that RF power significantly influences the electrical and optical properties of the deposited films.As RF power raises,the resistivity and Urbach energy fall initially and then rise,while the figure of merit,mean visible transmittance and optical bandgap show the reverse variation trend.At RF power of 190 W,the TGZO sample exhibits the highest electro-optical properties,with the maximum figure of merit(1.14×10^(4)Ω^(-1)∙cm^(-1)),mean visible transmittance(86.9%)and optical bandgap(3.50 eV),the minimum resistivity(6.26×10^(-4)Ω∙cm)and Urbach energy(174.23 meV).In addition,the optical constants of the deposited films were determined by the optical spectrum fitting method,and the RF power dependence of nonlinear optical properties was studied.It is observed that all the thin films exhibit normal dispersion characteristics in the visible region,and the nonlinear optical parameters are greatly affected by the RF power in the ultraviolet region.展开更多
The electronic structure,magnetic,and optical properties of two-dimensional(2D)GaSe doped with rare earth elements X(X=Sc,Y,La,Ce,Eu)were calculated using the first-principles plane wave method based on den-sity funct...The electronic structure,magnetic,and optical properties of two-dimensional(2D)GaSe doped with rare earth elements X(X=Sc,Y,La,Ce,Eu)were calculated using the first-principles plane wave method based on den-sity functional theory.The results show that intrinsic 2D GaSe is a p-type nonmagnetic semiconductor with an indi-rect bandgap of 2.6611 eV.The spin-up and spin-down channels of Sc-,Y-,and La-doped 2D GaSe are symmetric,they are non-magnetic semiconductors.The magnetic moments of Ce-and Eu-doped 2D GaSe are 0.908μ_(B)and 7.163μ_(B),which are magnetic semiconductors.Impurity energy levels appear in both spin-up and spin-down chan-nels of Eu-doped 2D GaSe,which enhances the probability of electron transition.Compared with intrinsic 2D GaSe,the static dielectric constant of the doped 2D GaSe increases,and the polarization ability is strengthened.The ab-sorption spectrum of the doped 2D GaSe shifts in the low-energy direction,and the red-shift phenomenon occurs,which extends the absorption spectral range.The optical reflection coefficient of the doped 2D GaSe is improved in the low energy region,and the improvement of Eu-doped 2D GaSe is the most obvious.展开更多
An eco-friendly superhydrophobic protective film(DTMS/TEOS silane film)was fabricated on sintered NdFeB substrate through the utilization of electrochemically assisted deposition technology.The structure,properties,an...An eco-friendly superhydrophobic protective film(DTMS/TEOS silane film)was fabricated on sintered NdFeB substrate through the utilization of electrochemically assisted deposition technology.The structure,properties,and film-forming mechanism of dodecyltrime-thoxysilane(DTMS)/tetraethoxysilane(TEOS)silane films were comprehensively analyzed using Fourier transform infrared spectroscopy(FT-IR),scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),potentiodynamic polarization curves and electrochemical impedance spectroscopy(EIS).Based on the test results,it can be determined that this film has a superhydrophobic property with a hydrophobicity angle of 152°.This special property can be attributed to the long alkyl chains in the DTMS molecule,the rough morphology,and the low surface energy of the DTMS/TEOS silane film.The surface of sintered NdFeB is coated with a layered three-dimensional network silane film that forms through the condensation of silanol substances.This film provides excellent corrosion resistance to the sintered NdFeB substrate,reducing its corrosion current density to 2.02×10~(-6)A/cm~2.Moreover,the impact of film on the magnetic characteristics of sintered NdFeB was assessed and found to be minimal.展开更多
The coupling effects of electrical pulse,temperature,strain rate,and strain on the flow behavior and plasticity of 5182-O aluminum alloy were investigated and characterized.The isothermal tensile test and electrically...The coupling effects of electrical pulse,temperature,strain rate,and strain on the flow behavior and plasticity of 5182-O aluminum alloy were investigated and characterized.The isothermal tensile test and electrically-assisted isothermal tensile test were performed at the same temperature,and three typical models were further embedded in ABAQUS/Explicit for numerical simulation to illustrate the electroplastic effect.The results show that electric pulse reduces the deformation resistance but enhances the elongation greatly.The calibration accuracy of the proposed modified Lim−Huh model for highly nonlinear and coupled dynamic hardening behavior is not much improved compared to the modified Kocks−Mecking model.Moreover,the artificial neural network model is very suitable to describe the macromechenical response of materials under the coupling effect of different variables.展开更多
The influence of Ga and Bi on the microstructure and electrochemical performance of Al-7Zn-0.1Sn (mass fraction,%) sacrificial anodes was investigated by means of optical microscopy (OM),scanning electron microsco...The influence of Ga and Bi on the microstructure and electrochemical performance of Al-7Zn-0.1Sn (mass fraction,%) sacrificial anodes was investigated by means of optical microscopy (OM),scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDAX) and electrochemical measurements.It was found that the coarse dendrites structure transformed into the equiaxed grains as well as a small amount of dendrite grains after adding Ga and Bi into Al-Zn-Sn alloys.A high current efficiency of 97% and even corrosion morphology were obtained for Al-7Zn-0.1Sn-0.015Ga-0.1Bi alloy.The results indicate that the proper amount of Ga and Bi is effective on improving the microstructure and electrochemical performance of Al-Zn-Sn alloy.展开更多
In order to ameliorate the electrochemical hydrogen storage performance of La-Mg-Ni system A2B7-type electrode alloys, a small amount of Si was added. The La0.8Mg0.2Ni3.3Co0.2Six (x=0-0.2) electrode alloys were prep...In order to ameliorate the electrochemical hydrogen storage performance of La-Mg-Ni system A2B7-type electrode alloys, a small amount of Si was added. The La0.8Mg0.2Ni3.3Co0.2Six (x=0-0.2) electrode alloys were prepared by casting and annealing. The effects of adding Si on the structure and electrochemical hydrogen storage characteristics of the alloys were investigated systematically. The results indicate that the as-cast and annealed alloys hold multiple structures, involving two major phases of (La, Mg)2Ni7 with a Ce2Ni7-type hexagonal structure and LaNi5 with a CaCu5-type hexagonal structure as well as one residual phase LaNi3. The addition of Si results in a decrease in (La, Mg)2Ni7 phase and an increase in LaNi5 phase without changing the phase structure of the alloys. What is more, it brings on an obvious effect on electrochemical hydrogen storage characteristics of the alloys. The discharge capacities of the as-cast and annealed alloys decline with the increase of Si content, but their cycle stabilities clearly grow under the same condition. Furthermore, the measurements of the high rate discharge ability, the limiting current density, hydrogen diffusion coefficient as well as electrochemical impedance spectra all indicate that the electrochemical kinetic properties of the electrode alloys first increase and then decrease with the rising of Si content.展开更多
Al-doped ZnO thin films were prepared on glass substrate using an ultra-high density target by RF magnetron sputtering at room temperature. The microstructure, surface morphology, optical and electrical properties of ...Al-doped ZnO thin films were prepared on glass substrate using an ultra-high density target by RF magnetron sputtering at room temperature. The microstructure, surface morphology, optical and electrical properties of AZO thin films were investigated by X-ray diffractometer, scanning electron microscope, UV-visible spectrophotometer, four-point probe method, and Hall-effect measurement system. The results showed that all the films obtained were polycrystalline with a hexagonal structure and average optical transmittance of AZO thin films was over 85 % at different sputtering powers. The sputtering power had a great effect on optoelectronic properties of the AZO thin films, especially on the resistivity. The lowest resistivity of 4.5×10^-4 Ω·cm combined with the transmittance of 87.1% was obtained at sputtering power of 200 W. The optical band gap varied between 3.48 and 3.68 eV.展开更多
The as-cast Mg2Ni-type Mg20–xYxNi10 (x=0, 1, 2, 3 and 4) electrode alloys were prepared by vacuum induction melting. Subsequently, the as-cast alloys were mechanically milled in a planetary-type ball mill. The analys...The as-cast Mg2Ni-type Mg20–xYxNi10 (x=0, 1, 2, 3 and 4) electrode alloys were prepared by vacuum induction melting. Subsequently, the as-cast alloys were mechanically milled in a planetary-type ball mill. The analyses of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) reveal that nanocrystalline and amorphous structure can be obtained by mechanical milling, and the amount of amorphous phase increases with milling time prolonging. The electrochemical measurements show that the discharge capacity of Y0 alloy increases with milling time prolonging, while that of the Y-substituted alloys has a maximum value in the same condition. The cycle stabilities of the alloys decrease with milling time prolonging. The effect of milling time on the electrochemical kinetics of the alloys is related to Y content. Whenx=0, the high rate discharge ability, diffusion coefficient of hydrogen atom, limiting current density and charge transfer rate all increase with milling time prolonging, but the results are exactly opposite whenx=3.展开更多
The partial substitution of M (M=Sm, Nd, Pr) for La was performed in order to ameliorate the electrochemical hydrogen storage performance of RE–Mg–Ni-based A2B7-type electrode alloys. The La0.8–xMxMg0.2Ni3.35Al0....The partial substitution of M (M=Sm, Nd, Pr) for La was performed in order to ameliorate the electrochemical hydrogen storage performance of RE–Mg–Ni-based A2B7-type electrode alloys. The La0.8–xMxMg0.2Ni3.35Al0.1Si0.05 (M=Sm, Nd, Pr;x=0-0.4) electrode alloys were fabricated by casting and annealing and their microstructures were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The major phases (La, Mg)2Ni7 with the hexagonal Ce2Ni7-type structure and LaNi5 with the hexagonal CaCu5-type structure make up the basic microstructure of the experimental alloys. The discharge capacities of the as-cast and annealed alloys all gain their maximum values with the M (M=Sm, Nd, Pr) content varying. The electrochemical cycle stability of the as-cast and annealed alloys clearly rises with the M (M=Sm, Nd, Pr) content growing. Furthermore, the electrochemical kinetics of the alloys, including the high rate discharge ability, charge transfer rate, limiting current density and hydrogen diffusion coefficient, all present a increase trend at first and then decrease with the rising of M (M=Sm, Nd, Pr) content.展开更多
Magnesium alloys can be developed as anode materials for seawater activated batteries. The electrochemical properties of AZ31, AP65 and Mg-3%Ga-2%Hg alloy anodes discharged in seawater were studied. The potentiodynami...Magnesium alloys can be developed as anode materials for seawater activated batteries. The electrochemical properties of AZ31, AP65 and Mg-3%Ga-2%Hg alloy anodes discharged in seawater were studied. The potentiodynamic polarization shows that the Mg-3%Ga-2%Hg alloy provides more negative corrosion potentials than AZ31 or AP65 alloy. The galvanostatic discharge results show that the Mg-3%Ga-2%Hg alloy exhibits good electrochemical properties as anodes in seawater. And the EIS studies reveal that the magnesium alloy anode/seawater interfacial process is determined by an activation controlled reaction. The Mg3Hg and Mg21Ga5Hg3 phases in Mg-3%Ga-2%Hg alloy improve its electrochemical properties better than the Mg17(Al,Zn)12 phase in AZ31 and Mg(Pb) solid solution phase in AP65 alloys.展开更多
文摘Sodium-sulfur(Na-S)and potassium-sulfur(K-S)batteries for use at room temperature have received widespread attention because of the abundance and low cost of their raw materials and their high energy density.However,their development is restricted by the shuttling of polysulfides,large volume expansion and poor conductivity.To overcome these obstacles,an effective approach is to use carbon-based materials with abundant space for the sulfur that has sulfiphilic sites to immobilize it,and a high electrical conductivity.Hollow carbon spheres(HCSs)with a controllable structure and composition are promising for this purpose.We consider recent progress in optimizing the electrochemical performance of Na-/K-S batteries by using these materials.First,the advantages of HCSs,their synthesis methods,and strategies for preparing HCSs/sulfur composite materials are reviewed.Second,the use of HCSs in Na-/K-S batteries,along with mechanisms underlying the resulting performance improvement,are discussed.Finally,prospects for the further development of HCSs for metal−S batteries are presented.
文摘Zinc-ion capacitors(ZICs),which consist of a capacitor-type electrode and a battery-type electrode,not only possess the high power density of supercapacitors and the high energy density of batteries,but also have other advantages such as abundant resources,high safety and environmental friendliness.However,they still face problems such as insufficient specific capacitance,a short cycling life,and narrow operating voltage and temperature ranges,which are hindering their practical use.We provide a comprehensive overview of the fundamental theory of carbon-based ZICs and summarize recent research progress from three perspectives:the carbon cathode,electrolyte and zinc anode.The influence of the structure and surface chemical properties of the carbon materials on the capacitive performance of ZICs is considered together with theoretical guidance for advancing their development and practical use.
基金the Ministry of Science,Technological Development and Innovation of the Republic of Serbia(No.451-03-47/2023-01/200017)the PhD fellowship of Slađana LAKETIĆ.Authors would also like to acknowledge the help of Dr.Anton HOHENWARTER from the Department of Materials Science,Montanuniversitat Leoben,Austria,during the Ti−45Nb alloy microstructural analysis.
文摘The Ti−45Nb(wt.%)alloy properties were investigated in relation to its potential biomedical use.Laser surface modification was utilized to improve its performance in biological systems.As a result of the laser treatment,(Ti,Nb)O scale was formed and various morphological features appeared on the alloy surface.The electrochemical behavior of Ti−45Nb alloy in simulated body conditions was evaluated and showed that the alloy was highly resistant to corrosion deterioration regardless of additional laser surface modification treatment.Nevertheless,the improved corrosion resistance after laser treatment was evident(the corrosion current density of the alloy before laser irradiation was 2.84×10^(−8)A/cm^(2),while that after laser treatment with 5 mJ was 0.65×10^(−8)A/cm^(2))and ascribed to the rapid formation of a complex and passivating bi-modal surface oxide layer.Alloy cytotoxicity and effects of the Ti−45Nb alloy laser surface modification on the MRC-5 cell viability,morphology,and proliferation were also investigated.The Ti−45Nb alloy showed no cytotoxic effect.Moreover,cells showed improved viability and adherence to the alloy surface after the laser irradiation treatment.The highest average cell viability of 115.37%was attained for the alloy laser-irradiated with 15 mJ.Results showed that the laser surface modification can be successfully utilized to significantly improve alloy performance in a biological environment.
文摘Thin transparent oxide conducting films(TCOFs)of titanium and gallium substituted zinc oxide(TGZO)were fabricated via radio frequency(RF)magnetron sputtering technique.The effects of RF power on electrical,linear and nonlinear optical characteristics were investigated by Hall tester,Ultraviolet(UV)-visible spectrophotometer and optical characterization method.The results indicate that RF power significantly influences the electrical and optical properties of the deposited films.As RF power raises,the resistivity and Urbach energy fall initially and then rise,while the figure of merit,mean visible transmittance and optical bandgap show the reverse variation trend.At RF power of 190 W,the TGZO sample exhibits the highest electro-optical properties,with the maximum figure of merit(1.14×10^(4)Ω^(-1)∙cm^(-1)),mean visible transmittance(86.9%)and optical bandgap(3.50 eV),the minimum resistivity(6.26×10^(-4)Ω∙cm)and Urbach energy(174.23 meV).In addition,the optical constants of the deposited films were determined by the optical spectrum fitting method,and the RF power dependence of nonlinear optical properties was studied.It is observed that all the thin films exhibit normal dispersion characteristics in the visible region,and the nonlinear optical parameters are greatly affected by the RF power in the ultraviolet region.
文摘The electronic structure,magnetic,and optical properties of two-dimensional(2D)GaSe doped with rare earth elements X(X=Sc,Y,La,Ce,Eu)were calculated using the first-principles plane wave method based on den-sity functional theory.The results show that intrinsic 2D GaSe is a p-type nonmagnetic semiconductor with an indi-rect bandgap of 2.6611 eV.The spin-up and spin-down channels of Sc-,Y-,and La-doped 2D GaSe are symmetric,they are non-magnetic semiconductors.The magnetic moments of Ce-and Eu-doped 2D GaSe are 0.908μ_(B)and 7.163μ_(B),which are magnetic semiconductors.Impurity energy levels appear in both spin-up and spin-down chan-nels of Eu-doped 2D GaSe,which enhances the probability of electron transition.Compared with intrinsic 2D GaSe,the static dielectric constant of the doped 2D GaSe increases,and the polarization ability is strengthened.The ab-sorption spectrum of the doped 2D GaSe shifts in the low-energy direction,and the red-shift phenomenon occurs,which extends the absorption spectral range.The optical reflection coefficient of the doped 2D GaSe is improved in the low energy region,and the improvement of Eu-doped 2D GaSe is the most obvious.
基金financial support from the Public Welfare Projects of Zhejiang Province,China(No.LGG22E010002)the National Natural Science Foundation of China(Nos.52001300,52171083)。
文摘An eco-friendly superhydrophobic protective film(DTMS/TEOS silane film)was fabricated on sintered NdFeB substrate through the utilization of electrochemically assisted deposition technology.The structure,properties,and film-forming mechanism of dodecyltrime-thoxysilane(DTMS)/tetraethoxysilane(TEOS)silane films were comprehensively analyzed using Fourier transform infrared spectroscopy(FT-IR),scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),potentiodynamic polarization curves and electrochemical impedance spectroscopy(EIS).Based on the test results,it can be determined that this film has a superhydrophobic property with a hydrophobicity angle of 152°.This special property can be attributed to the long alkyl chains in the DTMS molecule,the rough morphology,and the low surface energy of the DTMS/TEOS silane film.The surface of sintered NdFeB is coated with a layered three-dimensional network silane film that forms through the condensation of silanol substances.This film provides excellent corrosion resistance to the sintered NdFeB substrate,reducing its corrosion current density to 2.02×10~(-6)A/cm~2.Moreover,the impact of film on the magnetic characteristics of sintered NdFeB was assessed and found to be minimal.
基金the financial supports from the National Natural Science Foundation of China(Nos.52075423,U2141214).
文摘The coupling effects of electrical pulse,temperature,strain rate,and strain on the flow behavior and plasticity of 5182-O aluminum alloy were investigated and characterized.The isothermal tensile test and electrically-assisted isothermal tensile test were performed at the same temperature,and three typical models were further embedded in ABAQUS/Explicit for numerical simulation to illustrate the electroplastic effect.The results show that electric pulse reduces the deformation resistance but enhances the elongation greatly.The calibration accuracy of the proposed modified Lim−Huh model for highly nonlinear and coupled dynamic hardening behavior is not much improved compared to the modified Kocks−Mecking model.Moreover,the artificial neural network model is very suitable to describe the macromechenical response of materials under the coupling effect of different variables.
基金Project(094200510019) supported by Technology Creative Programmer of Henan for Excellent Talents,ChinaProject(092300410132) supported by the Natural Science Foundation of Henan Province,China
文摘The influence of Ga and Bi on the microstructure and electrochemical performance of Al-7Zn-0.1Sn (mass fraction,%) sacrificial anodes was investigated by means of optical microscopy (OM),scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDAX) and electrochemical measurements.It was found that the coarse dendrites structure transformed into the equiaxed grains as well as a small amount of dendrite grains after adding Ga and Bi into Al-Zn-Sn alloys.A high current efficiency of 97% and even corrosion morphology were obtained for Al-7Zn-0.1Sn-0.015Ga-0.1Bi alloy.The results indicate that the proper amount of Ga and Bi is effective on improving the microstructure and electrochemical performance of Al-Zn-Sn alloy.
基金Projects(50961009,51161015)supported by the National Natural Science Foundation of ChinaProject(2011AA03A408)supported by the High-tech Research and Development Program of ChinaProjects(2011ZD10,2010ZD05)supported by the Natural Science Foundation of Inner Mongolia,China
文摘In order to ameliorate the electrochemical hydrogen storage performance of La-Mg-Ni system A2B7-type electrode alloys, a small amount of Si was added. The La0.8Mg0.2Ni3.3Co0.2Six (x=0-0.2) electrode alloys were prepared by casting and annealing. The effects of adding Si on the structure and electrochemical hydrogen storage characteristics of the alloys were investigated systematically. The results indicate that the as-cast and annealed alloys hold multiple structures, involving two major phases of (La, Mg)2Ni7 with a Ce2Ni7-type hexagonal structure and LaNi5 with a CaCu5-type hexagonal structure as well as one residual phase LaNi3. The addition of Si results in a decrease in (La, Mg)2Ni7 phase and an increase in LaNi5 phase without changing the phase structure of the alloys. What is more, it brings on an obvious effect on electrochemical hydrogen storage characteristics of the alloys. The discharge capacities of the as-cast and annealed alloys decline with the increase of Si content, but their cycle stabilities clearly grow under the same condition. Furthermore, the measurements of the high rate discharge ability, the limiting current density, hydrogen diffusion coefficient as well as electrochemical impedance spectra all indicate that the electrochemical kinetic properties of the electrode alloys first increase and then decrease with the rising of Si content.
基金supported by open research fund from Guangxi Key Laboratory of New Energy and Building Energy Saving, China
文摘Al-doped ZnO thin films were prepared on glass substrate using an ultra-high density target by RF magnetron sputtering at room temperature. The microstructure, surface morphology, optical and electrical properties of AZO thin films were investigated by X-ray diffractometer, scanning electron microscope, UV-visible spectrophotometer, four-point probe method, and Hall-effect measurement system. The results showed that all the films obtained were polycrystalline with a hexagonal structure and average optical transmittance of AZO thin films was over 85 % at different sputtering powers. The sputtering power had a great effect on optoelectronic properties of the AZO thin films, especially on the resistivity. The lowest resistivity of 4.5×10^-4 Ω·cm combined with the transmittance of 87.1% was obtained at sputtering power of 200 W. The optical band gap varied between 3.48 and 3.68 eV.
基金Projects(51161015,51371094)supported by the National Natural Science Foundation of China
文摘The as-cast Mg2Ni-type Mg20–xYxNi10 (x=0, 1, 2, 3 and 4) electrode alloys were prepared by vacuum induction melting. Subsequently, the as-cast alloys were mechanically milled in a planetary-type ball mill. The analyses of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) reveal that nanocrystalline and amorphous structure can be obtained by mechanical milling, and the amount of amorphous phase increases with milling time prolonging. The electrochemical measurements show that the discharge capacity of Y0 alloy increases with milling time prolonging, while that of the Y-substituted alloys has a maximum value in the same condition. The cycle stabilities of the alloys decrease with milling time prolonging. The effect of milling time on the electrochemical kinetics of the alloys is related to Y content. Whenx=0, the high rate discharge ability, diffusion coefficient of hydrogen atom, limiting current density and charge transfer rate all increase with milling time prolonging, but the results are exactly opposite whenx=3.
基金Projects(51161015,51371094)supported by the National Natural Science Foundations of China
文摘The partial substitution of M (M=Sm, Nd, Pr) for La was performed in order to ameliorate the electrochemical hydrogen storage performance of RE–Mg–Ni-based A2B7-type electrode alloys. The La0.8–xMxMg0.2Ni3.35Al0.1Si0.05 (M=Sm, Nd, Pr;x=0-0.4) electrode alloys were fabricated by casting and annealing and their microstructures were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The major phases (La, Mg)2Ni7 with the hexagonal Ce2Ni7-type structure and LaNi5 with the hexagonal CaCu5-type structure make up the basic microstructure of the experimental alloys. The discharge capacities of the as-cast and annealed alloys all gain their maximum values with the M (M=Sm, Nd, Pr) content varying. The electrochemical cycle stability of the as-cast and annealed alloys clearly rises with the M (M=Sm, Nd, Pr) content growing. Furthermore, the electrochemical kinetics of the alloys, including the high rate discharge ability, charge transfer rate, limiting current density and hydrogen diffusion coefficient, all present a increase trend at first and then decrease with the rising of M (M=Sm, Nd, Pr) content.
基金Project (2011BAE22B03) supported by National Key Technologies R&D Program of ChinaProject (2011DFA50906) supported by the International S&T Cooperation Program of China
文摘Magnesium alloys can be developed as anode materials for seawater activated batteries. The electrochemical properties of AZ31, AP65 and Mg-3%Ga-2%Hg alloy anodes discharged in seawater were studied. The potentiodynamic polarization shows that the Mg-3%Ga-2%Hg alloy provides more negative corrosion potentials than AZ31 or AP65 alloy. The galvanostatic discharge results show that the Mg-3%Ga-2%Hg alloy exhibits good electrochemical properties as anodes in seawater. And the EIS studies reveal that the magnesium alloy anode/seawater interfacial process is determined by an activation controlled reaction. The Mg3Hg and Mg21Ga5Hg3 phases in Mg-3%Ga-2%Hg alloy improve its electrochemical properties better than the Mg17(Al,Zn)12 phase in AZ31 and Mg(Pb) solid solution phase in AP65 alloys.