The La-Mg-Ni-Co-Al-based AB2-type La0.8-xCe0.2YxMgNi3.4Co0.4Al0.1(x=0,0.05,0.1,0.15,0.2)alloys were prepared via melt spinning.The analyses of the X-ray diffraction(XRD)and scanning electron microscopy(SEM)proved that...The La-Mg-Ni-Co-Al-based AB2-type La0.8-xCe0.2YxMgNi3.4Co0.4Al0.1(x=0,0.05,0.1,0.15,0.2)alloys were prepared via melt spinning.The analyses of the X-ray diffraction(XRD)and scanning electron microscopy(SEM)proved that the experimental alloys contain the main phase LaMgNi4 and the second phase LaNi5.Increasing Y content and spinning rate lead to grain refinement and obvious change of the phase abundance without changing phase composition.Y substitution for La and melt spinning make the life-span of the alloys improved remarkably,which is attributed to the improvement of anti-oxidation,anti-pulverization and anti-corrosion abilities.In addition,the discharge capacity visibly decreases with increasing the Y content,while it firstly increases and then decreases with increasing spinning rate.The electrochemical kinetics increases to the optimum performance and then reduces with increasing spinning rate.Moreover,all the alloys achieve to the highest discharge capacities just at the initial cycle without activation.展开更多
Battery models are of great importance to develop portable computing systems,for whether the design of low power hardware architecture or the design of battery-aware scheduling policies.In this paper,we present a phys...Battery models are of great importance to develop portable computing systems,for whether the design of low power hardware architecture or the design of battery-aware scheduling policies.In this paper,we present a physically justified iterative computing method to illustrate the discharge,recovery and charge process of Li/Li-ion batteries.The discharge and recovery processes correspond well to an existing accurate analytical battery model:R-V-W's analytical model,and thus interpret this model algorithmically.Our method can also extend R-V-W's model easily to accommodate the charge process.The work will help the system designers to grasp the characteristics of R-V-W's battery model and also,enable to predict the battery behavior in the charge process in a uniform way as the discharge process and the recovery process.Experiments are performed to show the ac-curacy of the extended model by comparing the predicted charge times with those derived from the DUALFOIL simulations.Various profiles with different combinations of battery modes were tested.The experimental results show that the extended battery model preserves high accuracy in predicting the charge behavior.展开更多
In the paper,an operational program of electric bus charging station is proposed,which is special for "The Construction Project for Expo 2010 Temporary Electric Bus Charging Station".Based on the quick-chang...In the paper,an operational program of electric bus charging station is proposed,which is special for "The Construction Project for Expo 2010 Temporary Electric Bus Charging Station".Based on the quick-change mode,a vehicle operating schedule model has been established to meet the capacity of transport.Then,according to the quantity of passengers and utilization of batteries,a calculative method of parameters,such as the number of spare batteries and bus departure rules,has been provided.Furthermore,optimal simulation software designed for operating process of the charging station has been identified incorporating actual running data from electric buses and monitoring system of the charging station,and the rationality of the design is verified in the preliminary commissioning and the official operation.展开更多
In order to improve the service life of solar street lamp, it is necessary to manage the lamp's battery in the form of on-line detection via wireless communanication. A wireless managonent systean for solar street la...In order to improve the service life of solar street lamp, it is necessary to manage the lamp's battery in the form of on-line detection via wireless communanication. A wireless managonent systean for solar street lamp based on nanoLOC AVR nttlule is researched in this paper, the system can real-timely detect the solar street lamp's battery voltage, corrent, tonperature, internal resistance, residual capacity and so on. And the collected data is transmitted to computer' s management via wireless connnunication to achieve recording, storage, analysis and processing for various parameters.展开更多
Quality control is an important part of the capacitors automatic assembly process. Traditionally this control is being realized through a series of electrical measurements including capacity, tension, and tgct. In mos...Quality control is an important part of the capacitors automatic assembly process. Traditionally this control is being realized through a series of electrical measurements including capacity, tension, and tgct. In most cases, these measurements are not suitable for detecting defects that appear as a result of failures of certain elements of the assembly lines. These so called self-recovering failures very often remain unnoticed, because they do not cause a suspension of the assembly process and if not taken into consideration, they can seriously menace the final product quality. In this paper, the authors use PFMEA to identify and evaluate the risk of the self-recovering failures. They also propose a simple Simulink model, which could be useful when trying to estimate the effect of installing new control devices at an existing assembly line upon its overall reliability and productivity.展开更多
We demonstrate the effects of electron-electron (e-e) interactions in monolayer graphene quantum capacitors. Ultrathin yttrium oxide showed excellent per-formance as the dielectric layer in top-gate device geometry....We demonstrate the effects of electron-electron (e-e) interactions in monolayer graphene quantum capacitors. Ultrathin yttrium oxide showed excellent per-formance as the dielectric layer in top-gate device geometry. The structure and dielectric constant of the yttrium oxide layers have been carefully studied. The inverse compressibility retrieved from the quantum capacitance agreed fairly well with the theoretical predictions for the e--e interactions in monolayer graphene at different temperatures. We found that electron-hole puddles played a significant role in the low-density carrier region in graphene. By considering the temperature-dependent charge fluctuation, we established a model to explain the round-off effect originating from the e-e interactions in monolayer graphene near the Dirac point.展开更多
Highly crystalline and thermally stable pure multi-walled Ni3Si2O5(OH)4 nanotubes with a layered structure have been synthesized in water at a relatively low temperature of 200-210 ℃ using a facile and simple metho...Highly crystalline and thermally stable pure multi-walled Ni3Si2O5(OH)4 nanotubes with a layered structure have been synthesized in water at a relatively low temperature of 200-210 ℃ using a facile and simple method. The nickel ions between the layers could be reduced in situ to form size-tunable Ni nanocrystals, which endowed these nanotubes with tunable magnetic properties. Additionally, when used as the anode material in a lithium ion battery, the layered structure of the Ni3Si2O5(OH)4 nanotubes provided favorable transport kinetics for lithium ions and the discharge capacity reached 226.7 mA.h.g-1 after 21 cycles at a rate of 20 mA.g-1, Furthermore, after the nanotubes were calcined (600 ℃, 4 h) or reduced (180℃ 10 h), the corresponding discharge capacities increased to 277.2 mA.h.g-1 and 308.5 mA.h.g-1, respectively.展开更多
基金Projects(51761032,51471054)supported by the National Natural Science Foundation of ChinaProject(2015MS0558)supported by the Natural Science Foundation of Inner Mongolia,China
文摘The La-Mg-Ni-Co-Al-based AB2-type La0.8-xCe0.2YxMgNi3.4Co0.4Al0.1(x=0,0.05,0.1,0.15,0.2)alloys were prepared via melt spinning.The analyses of the X-ray diffraction(XRD)and scanning electron microscopy(SEM)proved that the experimental alloys contain the main phase LaMgNi4 and the second phase LaNi5.Increasing Y content and spinning rate lead to grain refinement and obvious change of the phase abundance without changing phase composition.Y substitution for La and melt spinning make the life-span of the alloys improved remarkably,which is attributed to the improvement of anti-oxidation,anti-pulverization and anti-corrosion abilities.In addition,the discharge capacity visibly decreases with increasing the Y content,while it firstly increases and then decreases with increasing spinning rate.The electrochemical kinetics increases to the optimum performance and then reduces with increasing spinning rate.Moreover,all the alloys achieve to the highest discharge capacities just at the initial cycle without activation.
基金Project partly supported by the Key Program of the National NaturalScience Foundation of China (No. 60533040)the National Natural Science Funds for Distinguished Young Scholar (No. 60525202)+1 种基金the Program for New Century Excellent Talents in University (No. NCET-04-0545)the Key Scientific and Technological Project of Hangzhou Technology Bureau (No. 20062412B01),China
文摘Battery models are of great importance to develop portable computing systems,for whether the design of low power hardware architecture or the design of battery-aware scheduling policies.In this paper,we present a physically justified iterative computing method to illustrate the discharge,recovery and charge process of Li/Li-ion batteries.The discharge and recovery processes correspond well to an existing accurate analytical battery model:R-V-W's analytical model,and thus interpret this model algorithmically.Our method can also extend R-V-W's model easily to accommodate the charge process.The work will help the system designers to grasp the characteristics of R-V-W's battery model and also,enable to predict the battery behavior in the charge process in a uniform way as the discharge process and the recovery process.Experiments are performed to show the ac-curacy of the extended model by comparing the predicted charge times with those derived from the DUALFOIL simulations.Various profiles with different combinations of battery modes were tested.The experimental results show that the extended battery model preserves high accuracy in predicting the charge behavior.
基金Supported by the National High Technology Research and Development Programme of China(No.2011AA05A108)the National NaturalScience Foundation of China(No.71041025)
文摘In the paper,an operational program of electric bus charging station is proposed,which is special for "The Construction Project for Expo 2010 Temporary Electric Bus Charging Station".Based on the quick-change mode,a vehicle operating schedule model has been established to meet the capacity of transport.Then,according to the quantity of passengers and utilization of batteries,a calculative method of parameters,such as the number of spare batteries and bus departure rules,has been provided.Furthermore,optimal simulation software designed for operating process of the charging station has been identified incorporating actual running data from electric buses and monitoring system of the charging station,and the rationality of the design is verified in the preliminary commissioning and the official operation.
文摘In order to improve the service life of solar street lamp, it is necessary to manage the lamp's battery in the form of on-line detection via wireless communanication. A wireless managonent systean for solar street lamp based on nanoLOC AVR nttlule is researched in this paper, the system can real-timely detect the solar street lamp's battery voltage, corrent, tonperature, internal resistance, residual capacity and so on. And the collected data is transmitted to computer' s management via wireless connnunication to achieve recording, storage, analysis and processing for various parameters.
文摘Quality control is an important part of the capacitors automatic assembly process. Traditionally this control is being realized through a series of electrical measurements including capacity, tension, and tgct. In most cases, these measurements are not suitable for detecting defects that appear as a result of failures of certain elements of the assembly lines. These so called self-recovering failures very often remain unnoticed, because they do not cause a suspension of the assembly process and if not taken into consideration, they can seriously menace the final product quality. In this paper, the authors use PFMEA to identify and evaluate the risk of the self-recovering failures. They also propose a simple Simulink model, which could be useful when trying to estimate the effect of installing new control devices at an existing assembly line upon its overall reliability and productivity.
文摘We demonstrate the effects of electron-electron (e-e) interactions in monolayer graphene quantum capacitors. Ultrathin yttrium oxide showed excellent per-formance as the dielectric layer in top-gate device geometry. The structure and dielectric constant of the yttrium oxide layers have been carefully studied. The inverse compressibility retrieved from the quantum capacitance agreed fairly well with the theoretical predictions for the e--e interactions in monolayer graphene at different temperatures. We found that electron-hole puddles played a significant role in the low-density carrier region in graphene. By considering the temperature-dependent charge fluctuation, we established a model to explain the round-off effect originating from the e-e interactions in monolayer graphene near the Dirac point.
基金This work was supported by the Natural Science Foundation of China (No. 20725102), the Fok Ying Tung Education Foundation (No. 111012), and the State Key Project of Fundamental Research for Nanoscience and Nanotechnology (Nos. 2011CB932402, 2007CB310501, and 2011CB935704).
文摘Highly crystalline and thermally stable pure multi-walled Ni3Si2O5(OH)4 nanotubes with a layered structure have been synthesized in water at a relatively low temperature of 200-210 ℃ using a facile and simple method. The nickel ions between the layers could be reduced in situ to form size-tunable Ni nanocrystals, which endowed these nanotubes with tunable magnetic properties. Additionally, when used as the anode material in a lithium ion battery, the layered structure of the Ni3Si2O5(OH)4 nanotubes provided favorable transport kinetics for lithium ions and the discharge capacity reached 226.7 mA.h.g-1 after 21 cycles at a rate of 20 mA.g-1, Furthermore, after the nanotubes were calcined (600 ℃, 4 h) or reduced (180℃ 10 h), the corresponding discharge capacities increased to 277.2 mA.h.g-1 and 308.5 mA.h.g-1, respectively.