针对模块化多电平统一电能质量调节器(modular multilevel unified power quality conditioner, MMC-UPQC)六桥臂结构下的单相桥臂故障问题,提出了一种五桥臂拓扑,这种新型拓扑可实现故障情况下的电能质量补偿。首先,对MMC-UPQC串并联...针对模块化多电平统一电能质量调节器(modular multilevel unified power quality conditioner, MMC-UPQC)六桥臂结构下的单相桥臂故障问题,提出了一种五桥臂拓扑,这种新型拓扑可实现故障情况下的电能质量补偿。首先,对MMC-UPQC串并联侧的数学模型进行分析,提出了一种复合模型预测控制(hybrid model predictive control,H-MPC),所提控制方法结合了有限集模型预测控制(finite-control-set model predictive control, FCS-MPC)以及快速模型预测控制(fast model predictive control, F-MPC)。然后,通过构建两侧独立的价值函数减少了控制方法的计算量,同时也实现了五桥臂解耦控制。最后,相比传统线性(例如PI)和非线性(例如无源控制passivity-based control,PBC)的控制策略,所提复合模型预测控制在电压补偿、负序电压抑制以及谐波电流补偿等方面具有一定优势,并在一定程度上避免了复杂的参数整定及坐标变化环节。仿真实验结果证明了所提控制方法的可行性和优越性。展开更多
文摘针对模块化多电平统一电能质量调节器(modular multilevel unified power quality conditioner, MMC-UPQC)六桥臂结构下的单相桥臂故障问题,提出了一种五桥臂拓扑,这种新型拓扑可实现故障情况下的电能质量补偿。首先,对MMC-UPQC串并联侧的数学模型进行分析,提出了一种复合模型预测控制(hybrid model predictive control,H-MPC),所提控制方法结合了有限集模型预测控制(finite-control-set model predictive control, FCS-MPC)以及快速模型预测控制(fast model predictive control, F-MPC)。然后,通过构建两侧独立的价值函数减少了控制方法的计算量,同时也实现了五桥臂解耦控制。最后,相比传统线性(例如PI)和非线性(例如无源控制passivity-based control,PBC)的控制策略,所提复合模型预测控制在电压补偿、负序电压抑制以及谐波电流补偿等方面具有一定优势,并在一定程度上避免了复杂的参数整定及坐标变化环节。仿真实验结果证明了所提控制方法的可行性和优越性。