The effect of 10% Si (mole fraction) addition on TiAlSiN coatings was studied. Ti0.5Al0.5N, Ti0.5Al0.4Si0.1N and Ti0.55Al0.35Si0.1N coatings were deposited on WC?Co substrates by cathodic arc evaporation. The mi...The effect of 10% Si (mole fraction) addition on TiAlSiN coatings was studied. Ti0.5Al0.5N, Ti0.5Al0.4Si0.1N and Ti0.55Al0.35Si0.1N coatings were deposited on WC?Co substrates by cathodic arc evaporation. The microstructure and mechanical properties were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), nano-indentation measurement and scratch test. The mechanisms of how Si affects the properties and failure modes of TiAlSiN coatings were also discussed. The results show that the addition of 10% Si results in the formation of nc-(Ti,Al,Si)N/a-Si3N4 nano-composite structure. The hardness and toughness of TiAlSiN coatings increase, whereas the coating adhesion strength decreases. Compared with Ti0.55Al0.35Si0.1N coating, Ti0.5Al0.4Si0.1N coating has higher hardness but lower toughness. The dominant failure mode of TiAlN coating is wedging spallation due to low toughness and strong interfacial adhesion. The dominant failure mode of TiAlSiN coatings is buckling spallation due to improved toughness and weakened interfacial adhesion.展开更多
Aluminum alloys are being increasingly applied in the automotive industry as a means to reduce mass. Their application to the vehicle structure is typically via a combination of either mechanical or fusion joining wit...Aluminum alloys are being increasingly applied in the automotive industry as a means to reduce mass. Their application to the vehicle structure is typically via a combination of either mechanical or fusion joining with adhesive bonding. Correspondingly, there has been a large effort in improving the adhesive bonding characteristics by changing the surface properties using different surface treatment techniques. One such method is the atmospheric arc discharge process which develops a specific surface roughness which can be leveraged to improve adhesive bonding. In this paper the effect of a textured surface by arc discharge on the failure mode and strength of adhesively bonded aluminum alloy sheets is investigated. A single-lap joint configuration is used for simulation and experimental analysis. A two-dimensional (2D) finite element method (FEM) involving the morphology of treated surfaces and using interfacial elements based on a cohesive zone model (CZM) are used to predict the joint strength which is an enabler for faster product development cycles. The influence of arc process parameters: the arc current and the torch scanning speed, on the surface morphology and joint strength are explored in this study. Specifically, the present study shows that the surface treatment of aluminum alloys by arc discharge can strongly enhance adhesive bond strength. Additionally, arc treatment not only increases the joint strength but also improves the quality of bond along the interface (transition toward cohesive failure mode). The current FE simulation of adhesive joint using the elastic and elasto-plastic (non-linear) material properties for adherend and adhesive, respectively, and cohesive zone elements for interface shows an accurate prediction of the resulting joint strength. By inclusion of non-linear multi-scale geometry model via considering the surface topographical changes after surface treatment the FE joint strength prediction can be successfully implemented.展开更多
文摘The effect of 10% Si (mole fraction) addition on TiAlSiN coatings was studied. Ti0.5Al0.5N, Ti0.5Al0.4Si0.1N and Ti0.55Al0.35Si0.1N coatings were deposited on WC?Co substrates by cathodic arc evaporation. The microstructure and mechanical properties were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), nano-indentation measurement and scratch test. The mechanisms of how Si affects the properties and failure modes of TiAlSiN coatings were also discussed. The results show that the addition of 10% Si results in the formation of nc-(Ti,Al,Si)N/a-Si3N4 nano-composite structure. The hardness and toughness of TiAlSiN coatings increase, whereas the coating adhesion strength decreases. Compared with Ti0.55Al0.35Si0.1N coating, Ti0.5Al0.4Si0.1N coating has higher hardness but lower toughness. The dominant failure mode of TiAlN coating is wedging spallation due to low toughness and strong interfacial adhesion. The dominant failure mode of TiAlSiN coatings is buckling spallation due to improved toughness and weakened interfacial adhesion.
文摘Aluminum alloys are being increasingly applied in the automotive industry as a means to reduce mass. Their application to the vehicle structure is typically via a combination of either mechanical or fusion joining with adhesive bonding. Correspondingly, there has been a large effort in improving the adhesive bonding characteristics by changing the surface properties using different surface treatment techniques. One such method is the atmospheric arc discharge process which develops a specific surface roughness which can be leveraged to improve adhesive bonding. In this paper the effect of a textured surface by arc discharge on the failure mode and strength of adhesively bonded aluminum alloy sheets is investigated. A single-lap joint configuration is used for simulation and experimental analysis. A two-dimensional (2D) finite element method (FEM) involving the morphology of treated surfaces and using interfacial elements based on a cohesive zone model (CZM) are used to predict the joint strength which is an enabler for faster product development cycles. The influence of arc process parameters: the arc current and the torch scanning speed, on the surface morphology and joint strength are explored in this study. Specifically, the present study shows that the surface treatment of aluminum alloys by arc discharge can strongly enhance adhesive bond strength. Additionally, arc treatment not only increases the joint strength but also improves the quality of bond along the interface (transition toward cohesive failure mode). The current FE simulation of adhesive joint using the elastic and elasto-plastic (non-linear) material properties for adherend and adhesive, respectively, and cohesive zone elements for interface shows an accurate prediction of the resulting joint strength. By inclusion of non-linear multi-scale geometry model via considering the surface topographical changes after surface treatment the FE joint strength prediction can be successfully implemented.