Current data from a moored Acoustic Doppler Current Profiler (ADCP) deployed at 69°30.155N, 169″00.654″W in the central Chukchi Sea during 2012 summertime is analyzed in the present paper. Characteristics of ...Current data from a moored Acoustic Doppler Current Profiler (ADCP) deployed at 69°30.155N, 169″00.654″W in the central Chukchi Sea during 2012 summertime is analyzed in the present paper. Characteristics of tidal and residual currents are obtained with Cosine-Lanczos filter and cross-spectral analyses. The main achievements are as follows: 1) Along with the local inertial frequency of 12.8 h, two other peaks at -12-h and -10-d dominate the time series of raw velocity; 2) The M2 dominates the 6 resolved tide constituents with significant amplitude variations over depth and the ratios of current speed of this constituent to that of the total tidal current are 54% and 47% for u and v components, respectively. All the resolved tidal constituents rotate clockwise at depth with the exception of MM and O1. The constituents of M2 and $2 with the largest major semi-axes are similar in eccentricity and orientation at deeper levels; 3) The maximum of residual currents varies in a range of 20-30 cm s-1 over depth and the current with lower velocities flow more true north with smaller magnitudes compared to the current in surface layer. The -10d fluctuation of residual current is found throughout the water column and attributed to the response of current to the local wind forcing, with an approximate 1.4 d lag-time at the surface level and occurring several hours later in the lower layer; 4) Mean residual currents flow toward the north with the magnitudes smaller than 7 cm s-1 in a general agreement with previous studies, which suggests a relatively weaker but stable northward flow indeed exists in the central Chukchi Sea.展开更多
Through the scientific investigation on Lushan for a long time, detailed studies have been carried out on the geologic stratum section of Late Quaternary in Dajiaochang. The series age data of complete stratigraphic s...Through the scientific investigation on Lushan for a long time, detailed studies have been carried out on the geologic stratum section of Late Quaternary in Dajiaochang. The series age data of complete stratigraphic section and full time formation since 400 kaBP were based on the results of the analyses using the dating methods with various instruments such as the ancient geomagnetism, electronics spin resonance (ESR), 36C1 and lumines- cence dating, etc. Corresponding to these data, it identified the paleomagnetic polarity events including Biwa- III event (320 kaBP), Biwa- 1I event (260 kaBP), Biwa- I event (180 kaBP, scarcity due to the disturbance of the iron dish), Blake event (100 kaBP) and Laschamp event (20 kaBP, didn't grow due to the activities of the surface), etc. Combined with the sequence stratigraphy, layer type characteristics and its sediment environment, the strati- graphic can be divided into 4 stages of development respectively : Stage [ is the climate period of glacial epoch (200-400 kaBP); stage 11 is the climate period of interglacial epoch (100-200 kaBP); stage llI is the climate peri- od of periglacial epoch (10-100 kaBP); stage IV is the climate period ofpostglacial epoch (0-10 kaBP).展开更多
Let M be an n-dimensional differentiable manifold with an affine connection without torsion and T_1~1(M) its(1, 1)-tensor bundle. In this paper, the authors define a new affine connection on T_1~1(M) called the interm...Let M be an n-dimensional differentiable manifold with an affine connection without torsion and T_1~1(M) its(1, 1)-tensor bundle. In this paper, the authors define a new affine connection on T_1~1(M) called the intermediate lift connection, which lies somewhere between the complete lift connection and horizontal lift connection. Properties of this intermediate lift connection are studied. Finally, they consider an affine connection induced from this intermediate lift connection on a cross-section σ_ξ(M) of T_1~1(M) defined by a(1, 1)-tensor field ξ and present some of its properties.展开更多
It is a well known fact that ionospheric delay error is a predominant factor which influences the positioning accuarcy of GNSS.Although the main part of the first-order ionospheric delay error can be removed by the fr...It is a well known fact that ionospheric delay error is a predominant factor which influences the positioning accuarcy of GNSS.Although the main part of the first-order ionospheric delay error can be removed by the frequency-dependent behaviors of the ionosphere,the second-order ionospheric delay error must be eliminated to achieve millimetre-scale positioning accuracy.Due to COSMIC occultation providing electron density profiles on the global scale,the paper presents the first-order and the second-order ionospheric delay error analysis on the global scale using the inversion of electron density profiles from COSMIC occultation data during 2009–2011.Firstly,because of the special geographical location of three ISR(incoherent scatter radar),the first-order and the second-order ionospheric delay errors are calculated and discussed;the paper also shows and analyzes the diurnal,seasonal,semi-annual variation of ionospheric delay error with respect to signal direction.Results show that for the L1 signal path,the first-order ionospheric delay error is the largest near the equator,which is circa 7 m;the maximum second-order ionospheric delay error are circa 0.6 cm,0.8 cm and 0.6 cm respectively for L1 signals coming from the zenith,the north and the south at 10 degree elevation angles.The second-order ionospheric delay error on the L1 signal path from zenith are the symmetry between 15°and 15°with respect to magnetic equator,and are nearly zero at the magnetic equator.For the first time,the second-order ionospheric delay error on the global scale is presented,so this research will greatly contribute to analysing the higher-order ionospheric delay error characteristics on the global scale.展开更多
基金funded by the Basic Research Fund Project (GY2007T08)Public Science and Technology Research Funds Projects of Ocean (201205007-1)+1 种基金Chinese Polar Environment Comprehensive Investigation & Assessment Programmes (CHINARE-2014-03-01)the Polar Science Strategic Research Foundation of China under contract No.JD201101
文摘Current data from a moored Acoustic Doppler Current Profiler (ADCP) deployed at 69°30.155N, 169″00.654″W in the central Chukchi Sea during 2012 summertime is analyzed in the present paper. Characteristics of tidal and residual currents are obtained with Cosine-Lanczos filter and cross-spectral analyses. The main achievements are as follows: 1) Along with the local inertial frequency of 12.8 h, two other peaks at -12-h and -10-d dominate the time series of raw velocity; 2) The M2 dominates the 6 resolved tide constituents with significant amplitude variations over depth and the ratios of current speed of this constituent to that of the total tidal current are 54% and 47% for u and v components, respectively. All the resolved tidal constituents rotate clockwise at depth with the exception of MM and O1. The constituents of M2 and $2 with the largest major semi-axes are similar in eccentricity and orientation at deeper levels; 3) The maximum of residual currents varies in a range of 20-30 cm s-1 over depth and the current with lower velocities flow more true north with smaller magnitudes compared to the current in surface layer. The -10d fluctuation of residual current is found throughout the water column and attributed to the response of current to the local wind forcing, with an approximate 1.4 d lag-time at the surface level and occurring several hours later in the lower layer; 4) Mean residual currents flow toward the north with the magnitudes smaller than 7 cm s-1 in a general agreement with previous studies, which suggests a relatively weaker but stable northward flow indeed exists in the central Chukchi Sea.
基金Open Foundation for State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,Chinese Academy of Sciences(No.SKLLQG0701)Hunan Province Key Subject Construction Item(No.ZRDL0701)Open Foundation for State Key Laboratory of Continental Dynamics,Northwest University(No.DL2006001)
文摘Through the scientific investigation on Lushan for a long time, detailed studies have been carried out on the geologic stratum section of Late Quaternary in Dajiaochang. The series age data of complete stratigraphic section and full time formation since 400 kaBP were based on the results of the analyses using the dating methods with various instruments such as the ancient geomagnetism, electronics spin resonance (ESR), 36C1 and lumines- cence dating, etc. Corresponding to these data, it identified the paleomagnetic polarity events including Biwa- III event (320 kaBP), Biwa- 1I event (260 kaBP), Biwa- I event (180 kaBP, scarcity due to the disturbance of the iron dish), Blake event (100 kaBP) and Laschamp event (20 kaBP, didn't grow due to the activities of the surface), etc. Combined with the sequence stratigraphy, layer type characteristics and its sediment environment, the strati- graphic can be divided into 4 stages of development respectively : Stage [ is the climate period of glacial epoch (200-400 kaBP); stage 11 is the climate period of interglacial epoch (100-200 kaBP); stage llI is the climate peri- od of periglacial epoch (10-100 kaBP); stage IV is the climate period ofpostglacial epoch (0-10 kaBP).
文摘Let M be an n-dimensional differentiable manifold with an affine connection without torsion and T_1~1(M) its(1, 1)-tensor bundle. In this paper, the authors define a new affine connection on T_1~1(M) called the intermediate lift connection, which lies somewhere between the complete lift connection and horizontal lift connection. Properties of this intermediate lift connection are studied. Finally, they consider an affine connection induced from this intermediate lift connection on a cross-section σ_ξ(M) of T_1~1(M) defined by a(1, 1)-tensor field ξ and present some of its properties.
基金supported by the National Natural Science Foundation of China(Grant Nos.41174023,41374014 and 41304030)the National High Technology Research and Development Program of China(Grant No.2013AA122501)the Data analysis center(Grant No.GFZX0301040308-06)
文摘It is a well known fact that ionospheric delay error is a predominant factor which influences the positioning accuarcy of GNSS.Although the main part of the first-order ionospheric delay error can be removed by the frequency-dependent behaviors of the ionosphere,the second-order ionospheric delay error must be eliminated to achieve millimetre-scale positioning accuracy.Due to COSMIC occultation providing electron density profiles on the global scale,the paper presents the first-order and the second-order ionospheric delay error analysis on the global scale using the inversion of electron density profiles from COSMIC occultation data during 2009–2011.Firstly,because of the special geographical location of three ISR(incoherent scatter radar),the first-order and the second-order ionospheric delay errors are calculated and discussed;the paper also shows and analyzes the diurnal,seasonal,semi-annual variation of ionospheric delay error with respect to signal direction.Results show that for the L1 signal path,the first-order ionospheric delay error is the largest near the equator,which is circa 7 m;the maximum second-order ionospheric delay error are circa 0.6 cm,0.8 cm and 0.6 cm respectively for L1 signals coming from the zenith,the north and the south at 10 degree elevation angles.The second-order ionospheric delay error on the L1 signal path from zenith are the symmetry between 15°and 15°with respect to magnetic equator,and are nearly zero at the magnetic equator.For the first time,the second-order ionospheric delay error on the global scale is presented,so this research will greatly contribute to analysing the higher-order ionospheric delay error characteristics on the global scale.