The coupling effects of electrical pulse,temperature,strain rate,and strain on the flow behavior and plasticity of 5182-O aluminum alloy were investigated and characterized.The isothermal tensile test and electrically...The coupling effects of electrical pulse,temperature,strain rate,and strain on the flow behavior and plasticity of 5182-O aluminum alloy were investigated and characterized.The isothermal tensile test and electrically-assisted isothermal tensile test were performed at the same temperature,and three typical models were further embedded in ABAQUS/Explicit for numerical simulation to illustrate the electroplastic effect.The results show that electric pulse reduces the deformation resistance but enhances the elongation greatly.The calibration accuracy of the proposed modified Lim−Huh model for highly nonlinear and coupled dynamic hardening behavior is not much improved compared to the modified Kocks−Mecking model.Moreover,the artificial neural network model is very suitable to describe the macromechenical response of materials under the coupling effect of different variables.展开更多
With the analysis of experiment and theory on GaN HEMT devices under DC sweep,an improved model for kink effect based on advanced SPICE model for high electron mobility transistors(ASM-HEMT)is pro⁃posed,considering th...With the analysis of experiment and theory on GaN HEMT devices under DC sweep,an improved model for kink effect based on advanced SPICE model for high electron mobility transistors(ASM-HEMT)is pro⁃posed,considering the relationship between the drain/gate-source voltage and kink effect.The improved model can not only accurately describe the trend of the drain-source current with the current collapse and kink effect,but also precisely fit different values of drain-source voltages at which the kink effect occurs under different gatesource voltages.Furthermore,it well characterizes the DC characteristics of GaN devices in the full operating range,with the fitting error less than 3%.To further verify the accuracy and convergence of the improved model,a load-pull system is built in ADS.The simulated result shows that although both the original ASM-HEMT and the improved model predict the output power for the maximum power matching of GaN devices well,the im⁃proved model predicts the power-added efficiency for the maximum efficiency matching more accurately,with 4%improved.展开更多
The electrochemical reduction of CO_(2)(eCO_(2)R)under ambient conditions is crucial for reducing carbon emissions and achieving carbon neutrality.Despite progress with alkaline and neutral electrolytes,their efficien...The electrochemical reduction of CO_(2)(eCO_(2)R)under ambient conditions is crucial for reducing carbon emissions and achieving carbon neutrality.Despite progress with alkaline and neutral electrolytes,their efficiency is limited by(bi)carbonates formation.Acidic media have emerged as a solution,addressing the(bi)carbonates challenge but introducing the issue of the hydrogen evolu-tion reaction(HER),which reduces CO_(2) conversion efficiency in acidic environments.This review focuses on enhancing the selectivity of acidic CO_(2) electrolysis.It commences with an overview of the latest advancements in acidic CO_(2) electrolysis,focusing on product selectivity and electrocatalytic activity enhancements.It then delves into the critical factors shaping selectivity in acidic CO_(2) electrolysis,with a special emphasis on the influence of cations and catalyst design.Finally,the research challenges and personal perspectives of acidic CO_(2) electrolysis are suggested.展开更多
Sodium-sulfur(Na-S)and potassium-sulfur(K-S)batteries for use at room temperature have received widespread attention because of the abundance and low cost of their raw materials and their high energy density.However,t...Sodium-sulfur(Na-S)and potassium-sulfur(K-S)batteries for use at room temperature have received widespread attention because of the abundance and low cost of their raw materials and their high energy density.However,their development is restricted by the shuttling of polysulfides,large volume expansion and poor conductivity.To overcome these obstacles,an effective approach is to use carbon-based materials with abundant space for the sulfur that has sulfiphilic sites to immobilize it,and a high electrical conductivity.Hollow carbon spheres(HCSs)with a controllable structure and composition are promising for this purpose.We consider recent progress in optimizing the electrochemical performance of Na-/K-S batteries by using these materials.First,the advantages of HCSs,their synthesis methods,and strategies for preparing HCSs/sulfur composite materials are reviewed.Second,the use of HCSs in Na-/K-S batteries,along with mechanisms underlying the resulting performance improvement,are discussed.Finally,prospects for the further development of HCSs for metal−S batteries are presented.展开更多
The electroplastic effect in AZ31B magnesium alloy sheet was investigated through uniaxial tensile tests. In order to show the athermal effect of the electrical pulses, two types of uniaxial tensile tests at the same ...The electroplastic effect in AZ31B magnesium alloy sheet was investigated through uniaxial tensile tests. In order to show the athermal effect of the electrical pulses, two types of uniaxial tensile tests at the same testing temperature were carried out: uniaxial tension in environmental cabinet and uniaxial tension with electrical pulses. In addition, the distribution of temperature field in the cross-section area during uniaxial tension with electrical pulses was simulated. The results show that the distribution of temperature field along the cross-section area is homogeneous. By comparing the true stress?true strain curves of AZ31B alloy under uniaxial tensile tests, the athermal effect with electrical pulses was confirmed. The microstructure evolution after the uniaxial tension was studied by optical microscopy. The results indicate that the electrical pulses induced dynamic recrystallization plays an important role in the decrease of flow stress. Finally, a flow stress model of AZ31B sheet taking the influence of electroplastic effect into account was proposed and validated. The results demonstrate that the calculated data fit the experimental data well.展开更多
Ni3Al coatings with and without Y2O3 particles were developed by annealing the electrodeposited Ni-Al composite coatings with and without Y2O3 particles at 800 °C for 3 h. The microstructures and cyclic oxidation...Ni3Al coatings with and without Y2O3 particles were developed by annealing the electrodeposited Ni-Al composite coatings with and without Y2O3 particles at 800 °C for 3 h. The microstructures and cyclic oxidation performances of the produced Ni3Al coatings were comparatively investigated, with the emphasis on the effect of Y2O3. SEM/EDAX and TEM characterizations showed that the dispersion of Y2O3 refines the grains. Oxidation at 900 °C for 100 h showed that the addition of Y2O3 significantly improved the cyclic oxidation resistance of Ni3Al coating. The effect of Y2O3 on the microstructure and the oxidation of the Ni3Al coating were discussed in detail.展开更多
Ni-CeO2 nanocomposite coatings with different CeO2 contents were prepared by codeposition of Ni and CeO2 nanoparticles with an average particle size of 7 nm onto pure Ni surfaces from a nickel sulfate. The CeO2 nanopa...Ni-CeO2 nanocomposite coatings with different CeO2 contents were prepared by codeposition of Ni and CeO2 nanoparticles with an average particle size of 7 nm onto pure Ni surfaces from a nickel sulfate. The CeO2 nanoparticles were dispersed in the electrodeposited nanocrystalline Ni grains (with a size range of 10-30 nm). The isothermal oxidation behaviours of Ni-CeO2 nanocomposite coatings with two different CeO2 particles contents and the electrodeposited pure Ni coating were comparatively investigated in order to elucidate the effect of CeO2 at different temperatures and also CeO2 contents on the oxidation behaviour of Ni-CeO2 nanocomposite coatings. The results show that the as-codeposited Ni-CeO2 nanocomposite coatings have a superior oxidation resistance compared with the electrodeposited pure Ni coating at 800 °C due to the codeposited CeO2 nanoparticles blocking the outward diffusion of nickel along the grain boundaries. However, the effects of CeO2 particles on the oxidation resistance significantly decrease at 1050 °C and 1150 °C due to the outward-volume diffusion of nickel controlling the oxidation growth mechanism, and the content of CeO2 has little influence on the oxidation.展开更多
The failure experiments of the P-LDMOS (lateral double diffused metal oxide semiconductor) demonstrate that the high peak electrical fields in the channel region of high-voltage P-LDMOS will reinforce the hot-carrie...The failure experiments of the P-LDMOS (lateral double diffused metal oxide semiconductor) demonstrate that the high peak electrical fields in the channel region of high-voltage P-LDMOS will reinforce the hot-carrier effect, which can greatly reduce the reliability of the P-LDMOS. The electrical field distribution and two field peaks along the channel surface are proposed by Tsuprem-4 and Medici. The reason of resulting in the two electrical field peaks is also discussed. Two ways of reducing the two field peaks, which are to increase the channel length and to reduce the channel concentration, are also presented. The experimental results show that the methods presented can effectively improve the gate breakdown voltage and greatly improve the reliability of the P-LDMOS.展开更多
Hydrogen storage composite alloy Ti0.10Zr0.15V0.35Cr0.10Ni0.30–10% LaNi3 was prepared by two-step arc-melting to improve the electro-catalytic activity and the kinetic performance of Ti-V-based solid solution alloy. ...Hydrogen storage composite alloy Ti0.10Zr0.15V0.35Cr0.10Ni0.30–10% LaNi3 was prepared by two-step arc-melting to improve the electro-catalytic activity and the kinetic performance of Ti-V-based solid solution alloy. The electrochemical properties and synergetic effect of the composite alloy electrode were systematically investigated by using X-ray diffractometry, field emission scanning electron microscopy, energy-dispersive spectrometry, electrochemical impedance spectroscopy and galvanostatic charge/discharge test. It is found that the main phase of the composite alloy is composed of V-based solid solution phase with a BCC structure and C14 Laves phase with hexagonal structure, while the secondary phase is formed in the composite alloy. The comprehensive electrochemical properties of the composite alloy electrode are significantly improved. The activation cycle number, the maximum discharge capacity and the low temperature dischargeability of the composite alloy are 5 cycles, 362.5 mA-h/g and 65.84% at 233 K, respectively. It is suggested that distinct synergetic effect occurs in the activation process, composite process, cyclic process and discharge process at a low or high temperature under different current densities, in the charge–transfer resistance and exchange current density.展开更多
AIM A model of experimental gastric dysrhythmia in rabbits was set up to evaluate the effect of different acupoints on regulating the gastric dysrhythmia in rabbits as to promoting the acupuncture treatment for this ...AIM A model of experimental gastric dysrhythmia in rabbits was set up to evaluate the effect of different acupoints on regulating the gastric dysrhythmia in rabbits as to promoting the acupuncture treatment for this kind of disease.展开更多
The transient resistance,voltage,and power of a nonlinear GaAs photoconductive semiconductor switch (PCSS) are presented by the finite difference formula to deal with the experiment data, based on the conversation o...The transient resistance,voltage,and power of a nonlinear GaAs photoconductive semiconductor switch (PCSS) are presented by the finite difference formula to deal with the experiment data, based on the conversation of energy in the switch circuit. This method resolves the problem of directly measuring the transient characteristics of PCSS in nonlinear mode. The curve of transient voltage shows that the average electric field of PCSS in the lock-on period is always higher than the Gunn threshold,and increases monotonically. By comparing the transient power curves of the PCSS and the electrical source,it is demonstrated directly that the power shortage leads to the PCSS from the lock-on state into the selfturnoff state,so a controllable turnoff of the PCSS in lock-on by changing the distribution of the circuit power is predicted.展开更多
Vibrator excitation generates not only reflections and refractions of wave fields on the subsurface interfaces but also electromagnetic waves with different frequencies. In this paper, we address the vibration-induced...Vibrator excitation generates not only reflections and refractions of wave fields on the subsurface interfaces but also electromagnetic waves with different frequencies. In this paper, we address the vibration-induced effects on the spontaneous potential field. The effects of controllable vibration on the spontaneous potential field were studied under real field geologic conditions. Experimental data confirmed that the vibration-induced effects on the spontaneous potential field do exist under field conditions. Monitoring records over a long time interval showed that there exist three information zones in the vibration-induced effects on the spontaneous potential field. These are the signal-varying zone, the extremestable zone, and the relaxation-recovery zone. Combined with different well-site data, it was concluded that the time-varying features of the anomalies in the information zones was closely related to the properties of the subsurface liquid (oil and water).展开更多
With the merits of high energy density,environmental friendliness,and cost effectiveness,lithium-sulfur(Li-S)batteries are considered as one of the most promising next-generation electrochemical storage systems.Howeve...With the merits of high energy density,environmental friendliness,and cost effectiveness,lithium-sulfur(Li-S)batteries are considered as one of the most promising next-generation electrochemical storage systems.However,the notorious polysulfide shuttle effect,which results in low active material utilization and serious capacity fading,severely impedes the practical application of Li-S batteries.Utilizing various electrocatalysts to improve the polysulfide redox kinetics has recently emerged as a promising strategy to address the shuttle effect.Specially,the electronic structure of the electrocatalysts plays a decisive role in determining the catalytic activity to facilitate the polysulfide conversion.Therefore,reasonably modulating the electronic structure of electrocatalysts is of paramount significance for improving the electrochemical performance of Li-S batteries.Herein,a comprehensive overview of the fascinating strategies to tailor the electronic structure of electrocatalysts for Li-S batteries is presented,including but not limited to vacancy engineering,heteroatom doping,single atom doping,band regulation,alloying,and heterostructure engineering.The future perspectives and challenges are also proposed for designing high-efficient electrocatalysts to construct high-energy-density and long-lifetime Li-S batteries.展开更多
Nanocomposite dielectrics show great promising application in developing next generation wearable all-solidstate cooling devices owing to the possessed advantages of high cooling efficiency, light-weight and small vol...Nanocomposite dielectrics show great promising application in developing next generation wearable all-solidstate cooling devices owing to the possessed advantages of high cooling efficiency, light-weight and small volume without the induced greenhouse effect or serious harm to ozone layer in the exploited refrigerants. However, low electrocaloric strength in nanocomposite dielectric is severely restricting its wide-spread application because of high applied operating voltage to improve electrocaloric effect. After addressing the chosen optimized ferroelectric ceramic and ferroelectric polymer matrix in conjunction with the analysis of crucial parameters, recent progress of electrocaloric effect(ECE) in polymer nanocomposites has been considerably reviewed. Subsequently, prior to proposing the conceptual design and devices/systems in electrocaloric nanocomposites, the existing developed devices/systems are reviewed. Finally, conclusions and prospects are conducted, including the aspects of materials chosen, structural design and key issues to be considered in improving electrocaloric effect of polymer nanocomposite dielectrics for flexible solidstate cooling devices.展开更多
Rapid technological development and population growth are responsible for a series of imminent environmental problems and an ineluctable energy crisis.The application of semiconductor nanomaterials in photocatalysis o...Rapid technological development and population growth are responsible for a series of imminent environmental problems and an ineluctable energy crisis.The application of semiconductor nanomaterials in photocatalysis or photoelectrocatalysis(PEC)for either the degradation of contaminants in the environment or the generation of hydrogen as clean fuel is an effective approach to alleviate these problems.However,the efficiency of such processes remains suboptimal for real applications.Reasonable construction of a built-in electric field is considered to efficiently enhance carrier separation and reduce carrier recombination to improve catalytic performance.In the past decade,as a new method to enhance the built-in electric field,the piezoelectric effect from piezoelectric materials has been extensively studied.In this review,we provide an overview of the properties of piezoelectric materials and the mechanisms of piezoelectricity and ferroelectricity for a built-in electric field.Then,piezoelectric and ferroelectric polarization regulated built-in electric fields that mediate catalysis are discussed.Furthermore,the applications of piezoelectric semiconductor materials are also highlighted,including degradation of pollutants,bacteria disinfection,water splitting for H2 generation,and organic synthesis.We conclude by discussing the challenges in the field and the exciting opportunities to further improve piezo-catalytic efficiency.展开更多
基金the financial supports from the National Natural Science Foundation of China(Nos.52075423,U2141214).
文摘The coupling effects of electrical pulse,temperature,strain rate,and strain on the flow behavior and plasticity of 5182-O aluminum alloy were investigated and characterized.The isothermal tensile test and electrically-assisted isothermal tensile test were performed at the same temperature,and three typical models were further embedded in ABAQUS/Explicit for numerical simulation to illustrate the electroplastic effect.The results show that electric pulse reduces the deformation resistance but enhances the elongation greatly.The calibration accuracy of the proposed modified Lim−Huh model for highly nonlinear and coupled dynamic hardening behavior is not much improved compared to the modified Kocks−Mecking model.Moreover,the artificial neural network model is very suitable to describe the macromechenical response of materials under the coupling effect of different variables.
基金Supported by the National Key R&D Program of China(2022YFF0707800,2022YFF0707801)Primary Research&Development Plan of Jiangsu Province(BE2022070,BE2022070-2)。
文摘With the analysis of experiment and theory on GaN HEMT devices under DC sweep,an improved model for kink effect based on advanced SPICE model for high electron mobility transistors(ASM-HEMT)is pro⁃posed,considering the relationship between the drain/gate-source voltage and kink effect.The improved model can not only accurately describe the trend of the drain-source current with the current collapse and kink effect,but also precisely fit different values of drain-source voltages at which the kink effect occurs under different gatesource voltages.Furthermore,it well characterizes the DC characteristics of GaN devices in the full operating range,with the fitting error less than 3%.To further verify the accuracy and convergence of the improved model,a load-pull system is built in ADS.The simulated result shows that although both the original ASM-HEMT and the improved model predict the output power for the maximum power matching of GaN devices well,the im⁃proved model predicts the power-added efficiency for the maximum efficiency matching more accurately,with 4%improved.
文摘The electrochemical reduction of CO_(2)(eCO_(2)R)under ambient conditions is crucial for reducing carbon emissions and achieving carbon neutrality.Despite progress with alkaline and neutral electrolytes,their efficiency is limited by(bi)carbonates formation.Acidic media have emerged as a solution,addressing the(bi)carbonates challenge but introducing the issue of the hydrogen evolu-tion reaction(HER),which reduces CO_(2) conversion efficiency in acidic environments.This review focuses on enhancing the selectivity of acidic CO_(2) electrolysis.It commences with an overview of the latest advancements in acidic CO_(2) electrolysis,focusing on product selectivity and electrocatalytic activity enhancements.It then delves into the critical factors shaping selectivity in acidic CO_(2) electrolysis,with a special emphasis on the influence of cations and catalyst design.Finally,the research challenges and personal perspectives of acidic CO_(2) electrolysis are suggested.
文摘Sodium-sulfur(Na-S)and potassium-sulfur(K-S)batteries for use at room temperature have received widespread attention because of the abundance and low cost of their raw materials and their high energy density.However,their development is restricted by the shuttling of polysulfides,large volume expansion and poor conductivity.To overcome these obstacles,an effective approach is to use carbon-based materials with abundant space for the sulfur that has sulfiphilic sites to immobilize it,and a high electrical conductivity.Hollow carbon spheres(HCSs)with a controllable structure and composition are promising for this purpose.We consider recent progress in optimizing the electrochemical performance of Na-/K-S batteries by using these materials.First,the advantages of HCSs,their synthesis methods,and strategies for preparing HCSs/sulfur composite materials are reviewed.Second,the use of HCSs in Na-/K-S batteries,along with mechanisms underlying the resulting performance improvement,are discussed.Finally,prospects for the further development of HCSs for metal−S batteries are presented.
基金Projects(50975174,51275297)supported by the National Natural Science Foundation of ChinaProject(20100073110044)supported by the Education Ministry of China
文摘The electroplastic effect in AZ31B magnesium alloy sheet was investigated through uniaxial tensile tests. In order to show the athermal effect of the electrical pulses, two types of uniaxial tensile tests at the same testing temperature were carried out: uniaxial tension in environmental cabinet and uniaxial tension with electrical pulses. In addition, the distribution of temperature field in the cross-section area during uniaxial tension with electrical pulses was simulated. The results show that the distribution of temperature field along the cross-section area is homogeneous. By comparing the true stress?true strain curves of AZ31B alloy under uniaxial tensile tests, the athermal effect with electrical pulses was confirmed. The microstructure evolution after the uniaxial tension was studied by optical microscopy. The results indicate that the electrical pulses induced dynamic recrystallization plays an important role in the decrease of flow stress. Finally, a flow stress model of AZ31B sheet taking the influence of electroplastic effect into account was proposed and validated. The results demonstrate that the calculated data fit the experimental data well.
基金Project (11531319) supported by Scientific Research Fund of Heilongjiang Provincial Education Department, China
文摘Ni3Al coatings with and without Y2O3 particles were developed by annealing the electrodeposited Ni-Al composite coatings with and without Y2O3 particles at 800 °C for 3 h. The microstructures and cyclic oxidation performances of the produced Ni3Al coatings were comparatively investigated, with the emphasis on the effect of Y2O3. SEM/EDAX and TEM characterizations showed that the dispersion of Y2O3 refines the grains. Oxidation at 900 °C for 100 h showed that the addition of Y2O3 significantly improved the cyclic oxidation resistance of Ni3Al coating. The effect of Y2O3 on the microstructure and the oxidation of the Ni3Al coating were discussed in detail.
基金Project(11531319)supported by Scientific Research Fund of Heilongjiang Provincial Education Department,China
文摘Ni-CeO2 nanocomposite coatings with different CeO2 contents were prepared by codeposition of Ni and CeO2 nanoparticles with an average particle size of 7 nm onto pure Ni surfaces from a nickel sulfate. The CeO2 nanoparticles were dispersed in the electrodeposited nanocrystalline Ni grains (with a size range of 10-30 nm). The isothermal oxidation behaviours of Ni-CeO2 nanocomposite coatings with two different CeO2 particles contents and the electrodeposited pure Ni coating were comparatively investigated in order to elucidate the effect of CeO2 at different temperatures and also CeO2 contents on the oxidation behaviour of Ni-CeO2 nanocomposite coatings. The results show that the as-codeposited Ni-CeO2 nanocomposite coatings have a superior oxidation resistance compared with the electrodeposited pure Ni coating at 800 °C due to the codeposited CeO2 nanoparticles blocking the outward diffusion of nickel along the grain boundaries. However, the effects of CeO2 particles on the oxidation resistance significantly decrease at 1050 °C and 1150 °C due to the outward-volume diffusion of nickel controlling the oxidation growth mechanism, and the content of CeO2 has little influence on the oxidation.
基金The National High Technology Research and Deve-lopment Program of China (No.2004AA1Z1060)the Foundation ofGraduate Creative Program of Jiangsu (No.XM04-30)the Founda-tion of Excellent Doctoral Dissertation of Southeast University (No.YBJJ0413).
文摘The failure experiments of the P-LDMOS (lateral double diffused metal oxide semiconductor) demonstrate that the high peak electrical fields in the channel region of high-voltage P-LDMOS will reinforce the hot-carrier effect, which can greatly reduce the reliability of the P-LDMOS. The electrical field distribution and two field peaks along the channel surface are proposed by Tsuprem-4 and Medici. The reason of resulting in the two electrical field peaks is also discussed. Two ways of reducing the two field peaks, which are to increase the channel length and to reduce the channel concentration, are also presented. The experimental results show that the methods presented can effectively improve the gate breakdown voltage and greatly improve the reliability of the P-LDMOS.
基金Project (B2011203074) supported by the Natural Science Foundation of Hebei Province, ChinaProject (201101A129) supported by the Technology Research and Development Program of Qinhuangdao, Hebei Province, China
文摘Hydrogen storage composite alloy Ti0.10Zr0.15V0.35Cr0.10Ni0.30–10% LaNi3 was prepared by two-step arc-melting to improve the electro-catalytic activity and the kinetic performance of Ti-V-based solid solution alloy. The electrochemical properties and synergetic effect of the composite alloy electrode were systematically investigated by using X-ray diffractometry, field emission scanning electron microscopy, energy-dispersive spectrometry, electrochemical impedance spectroscopy and galvanostatic charge/discharge test. It is found that the main phase of the composite alloy is composed of V-based solid solution phase with a BCC structure and C14 Laves phase with hexagonal structure, while the secondary phase is formed in the composite alloy. The comprehensive electrochemical properties of the composite alloy electrode are significantly improved. The activation cycle number, the maximum discharge capacity and the low temperature dischargeability of the composite alloy are 5 cycles, 362.5 mA-h/g and 65.84% at 233 K, respectively. It is suggested that distinct synergetic effect occurs in the activation process, composite process, cyclic process and discharge process at a low or high temperature under different current densities, in the charge–transfer resistance and exchange current density.
文摘AIM A model of experimental gastric dysrhythmia in rabbits was set up to evaluate the effect of different acupoints on regulating the gastric dysrhythmia in rabbits as to promoting the acupuncture treatment for this kind of disease.
文摘The transient resistance,voltage,and power of a nonlinear GaAs photoconductive semiconductor switch (PCSS) are presented by the finite difference formula to deal with the experiment data, based on the conversation of energy in the switch circuit. This method resolves the problem of directly measuring the transient characteristics of PCSS in nonlinear mode. The curve of transient voltage shows that the average electric field of PCSS in the lock-on period is always higher than the Gunn threshold,and increases monotonically. By comparing the transient power curves of the PCSS and the electrical source,it is demonstrated directly that the power shortage leads to the PCSS from the lock-on state into the selfturnoff state,so a controllable turnoff of the PCSS in lock-on by changing the distribution of the circuit power is predicted.
文摘Vibrator excitation generates not only reflections and refractions of wave fields on the subsurface interfaces but also electromagnetic waves with different frequencies. In this paper, we address the vibration-induced effects on the spontaneous potential field. The effects of controllable vibration on the spontaneous potential field were studied under real field geologic conditions. Experimental data confirmed that the vibration-induced effects on the spontaneous potential field do exist under field conditions. Monitoring records over a long time interval showed that there exist three information zones in the vibration-induced effects on the spontaneous potential field. These are the signal-varying zone, the extremestable zone, and the relaxation-recovery zone. Combined with different well-site data, it was concluded that the time-varying features of the anomalies in the information zones was closely related to the properties of the subsurface liquid (oil and water).
文摘With the merits of high energy density,environmental friendliness,and cost effectiveness,lithium-sulfur(Li-S)batteries are considered as one of the most promising next-generation electrochemical storage systems.However,the notorious polysulfide shuttle effect,which results in low active material utilization and serious capacity fading,severely impedes the practical application of Li-S batteries.Utilizing various electrocatalysts to improve the polysulfide redox kinetics has recently emerged as a promising strategy to address the shuttle effect.Specially,the electronic structure of the electrocatalysts plays a decisive role in determining the catalytic activity to facilitate the polysulfide conversion.Therefore,reasonably modulating the electronic structure of electrocatalysts is of paramount significance for improving the electrochemical performance of Li-S batteries.Herein,a comprehensive overview of the fascinating strategies to tailor the electronic structure of electrocatalysts for Li-S batteries is presented,including but not limited to vacancy engineering,heteroatom doping,single atom doping,band regulation,alloying,and heterostructure engineering.The future perspectives and challenges are also proposed for designing high-efficient electrocatalysts to construct high-energy-density and long-lifetime Li-S batteries.
基金Project(202045007) supported by the Start-up Funds for Outstanding Talents in Central South University,China。
文摘Nanocomposite dielectrics show great promising application in developing next generation wearable all-solidstate cooling devices owing to the possessed advantages of high cooling efficiency, light-weight and small volume without the induced greenhouse effect or serious harm to ozone layer in the exploited refrigerants. However, low electrocaloric strength in nanocomposite dielectric is severely restricting its wide-spread application because of high applied operating voltage to improve electrocaloric effect. After addressing the chosen optimized ferroelectric ceramic and ferroelectric polymer matrix in conjunction with the analysis of crucial parameters, recent progress of electrocaloric effect(ECE) in polymer nanocomposites has been considerably reviewed. Subsequently, prior to proposing the conceptual design and devices/systems in electrocaloric nanocomposites, the existing developed devices/systems are reviewed. Finally, conclusions and prospects are conducted, including the aspects of materials chosen, structural design and key issues to be considered in improving electrocaloric effect of polymer nanocomposite dielectrics for flexible solidstate cooling devices.
基金supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2015023)National Natural Science Foundation of China(81471784,51802115)+3 种基金Natural Science Foundation of Beijing(2172058)Natural Science Foundation of Shandong Province(ZR2018BEM010,ZR2019YQ21)Major Program of Shandong Province Natural Science Foundation(ZR2018ZC0843)Scientific and Technology Project of University of Jinan(XKY1923)~~
文摘Rapid technological development and population growth are responsible for a series of imminent environmental problems and an ineluctable energy crisis.The application of semiconductor nanomaterials in photocatalysis or photoelectrocatalysis(PEC)for either the degradation of contaminants in the environment or the generation of hydrogen as clean fuel is an effective approach to alleviate these problems.However,the efficiency of such processes remains suboptimal for real applications.Reasonable construction of a built-in electric field is considered to efficiently enhance carrier separation and reduce carrier recombination to improve catalytic performance.In the past decade,as a new method to enhance the built-in electric field,the piezoelectric effect from piezoelectric materials has been extensively studied.In this review,we provide an overview of the properties of piezoelectric materials and the mechanisms of piezoelectricity and ferroelectricity for a built-in electric field.Then,piezoelectric and ferroelectric polarization regulated built-in electric fields that mediate catalysis are discussed.Furthermore,the applications of piezoelectric semiconductor materials are also highlighted,including degradation of pollutants,bacteria disinfection,water splitting for H2 generation,and organic synthesis.We conclude by discussing the challenges in the field and the exciting opportunities to further improve piezo-catalytic efficiency.