As an emerging research field,inductively coupled wireless power transfer(ICWPT) technology has attracted wide spread attention recently.In this paper,the maximum power transfer performances of four basic topologies l...As an emerging research field,inductively coupled wireless power transfer(ICWPT) technology has attracted wide spread attention recently.In this paper,the maximum power transfer performances of four basic topologies labeled as SS,SP,PS and PP are investigated.By modeling the equivalent circuits of these topologies in high frequency(HF),the primary resonance compensation capacitances for maximum power transfer capability are deduced.It is found that these capacitances fluctuate with load resistance change,which is disadvantageous to SP,PS and PP topologies and an obstacle to their practical applications as well.To solve this problem,a phase controlled inductor circuit is proposed.By adjusting the triggering angle,the real-time dynamic tuning control can be achieved to guarantee maximum power transfer.Finally,simulations and experiments show that the proposed method is of great effectiveness and reliability to solve the issue of resonance compensation capacitance fluctuation with load change and to guarantee the flexible applications of all topologies.展开更多
Wireless sensor networks consist of hundreds or thousands of sensor nodes that involve numerous restrictions in-cluding computation capability and battery capacity.Topology control is an important issue for achieving ...Wireless sensor networks consist of hundreds or thousands of sensor nodes that involve numerous restrictions in-cluding computation capability and battery capacity.Topology control is an important issue for achieving a balanced placement of sensor nodes.The clustering scheme is a widely known and efficient means of topology control for transmitting information to the base station in two hops.The automatic routing scheme of the self-organizing technique is another critical element of wireless sensor networks.In this paper we propose an optimal algorithm with cluster balance taken into consideration,and compare it with three well known and widely used approaches,i.e.,LEACH,MEER,and VAP-E,in performance evaluation.Experimental results show that the proposed approach increases the overall network lifetime,indicating that the amount of energy required for com-munication to the base station will be reduced for locating an optimal cluster.展开更多
基金supported by the National High-Tech Research & Development Program of China ("863" Program) (Grant No. 2012AA050210)the National Natural Science Foundation of China (Grant No. 51177011)+1 种基金the Research Innovation Program for College Graduates of Jiangsu Province (Grant No. CXZZ11_0150)Scholarship Award for Excellent Doctoral Student granted by Ministry of Education of China
文摘As an emerging research field,inductively coupled wireless power transfer(ICWPT) technology has attracted wide spread attention recently.In this paper,the maximum power transfer performances of four basic topologies labeled as SS,SP,PS and PP are investigated.By modeling the equivalent circuits of these topologies in high frequency(HF),the primary resonance compensation capacitances for maximum power transfer capability are deduced.It is found that these capacitances fluctuate with load resistance change,which is disadvantageous to SP,PS and PP topologies and an obstacle to their practical applications as well.To solve this problem,a phase controlled inductor circuit is proposed.By adjusting the triggering angle,the real-time dynamic tuning control can be achieved to guarantee maximum power transfer.Finally,simulations and experiments show that the proposed method is of great effectiveness and reliability to solve the issue of resonance compensation capacitance fluctuation with load change and to guarantee the flexible applications of all topologies.
基金supported by the Chung-Ang University Research Scholarship Grants,Korea
文摘Wireless sensor networks consist of hundreds or thousands of sensor nodes that involve numerous restrictions in-cluding computation capability and battery capacity.Topology control is an important issue for achieving a balanced placement of sensor nodes.The clustering scheme is a widely known and efficient means of topology control for transmitting information to the base station in two hops.The automatic routing scheme of the self-organizing technique is another critical element of wireless sensor networks.In this paper we propose an optimal algorithm with cluster balance taken into consideration,and compare it with three well known and widely used approaches,i.e.,LEACH,MEER,and VAP-E,in performance evaluation.Experimental results show that the proposed approach increases the overall network lifetime,indicating that the amount of energy required for com-munication to the base station will be reduced for locating an optimal cluster.