Azimuthal electromagnetic(EM)logging while drilling(LWD)has been extensively used in high-angle and horizontal(HA/HZ)wells.However,due to the effects of formation anisotropy,accurate geosteering decision and formation...Azimuthal electromagnetic(EM)logging while drilling(LWD)has been extensively used in high-angle and horizontal(HA/HZ)wells.However,due to the effects of formation anisotropy,accurate geosteering decision and formation evaluations have become increasingly difficult.To quantitatively analyze the effect of anisotropy on tool responses and data processing,this paper investigates the sensitivity of EM LWD measurements to electric anisotropy and inversion accuracy via forward modeling and inversion.First,a sensitivity factor is defined to quantitatively analyze the sensitivity of the magnetic field components and synthetic signals to electric anisotropy.Then,azimuthal EM LWD responses in anisotropic layered formations are simulated,and the sensitivities to formation parameters for compensated and uncompensated tool configurations are comparatively analyzed.Finally,we discuss the effects of the inversion model on bed boundary inversion in anisotropic formations.Numerical simulation and inversion results show that azimuthal EM LWD can be significantly affected by electric anisotropy.Fortunately,by using a symmetrical compensation configuration,the sensitivity of the geosignals to electric anisotropy can be suppressed,and the boundary detection capability can be further enhanced.Anisotropy normally gives rise to separated resistivity curves and abnormal"horns";moreover,complicated nonlinear distortion can also arise in geosignals as the tool approaches a bed boundary.If anisotropy effects are ignored in the inversion process,the estimated bed boundary and formation resistivity are usually unreliable,which may mislead geosteering decisions.展开更多
This paper investigates the relation between the induced electromotive force measured by induction logging tool and the apparent conductivity, and the relation between the apparent conductivity and the formation true ...This paper investigates the relation between the induced electromotive force measured by induction logging tool and the apparent conductivity, and the relation between the apparent conductivity and the formation true conductivity. Assuming the conductivity in Green's function to be the function of the field point coordinate, the apparent conductivity expression of electric-field intensity is derived using Green's formula, and the integral equation has been established representing the relationship of the apparent conductivity with the true conductivity under this condition. The integral equation is analyzed and then leads to the conclusion that the equivalent conductivity is the apparent conductivity and the values of the apparent conductivity function contain the true conductivity, and the method derived the true conductivity from the apparent conductivity around the well axis is put forward. The validity of the approach given in this paper is verified through numerical calculation. On the basis of above means, the transmitter coil produces an electric-field distribution in formation at every point where the induction logging tool moves along a wellbore, and a number of the receiving coils obtain an apparent conductivity distribution; this is what induction electric-field logging is.展开更多
基金supported by the National Natural Science Foundation of China(No.41674131,No.41974146,and No.41904109)the Shandong Province Postdoctoral Innovation Projects(sdbh20180025)the Fundamental Research Funds for the Central Universities(No.17CX06041)。
文摘Azimuthal electromagnetic(EM)logging while drilling(LWD)has been extensively used in high-angle and horizontal(HA/HZ)wells.However,due to the effects of formation anisotropy,accurate geosteering decision and formation evaluations have become increasingly difficult.To quantitatively analyze the effect of anisotropy on tool responses and data processing,this paper investigates the sensitivity of EM LWD measurements to electric anisotropy and inversion accuracy via forward modeling and inversion.First,a sensitivity factor is defined to quantitatively analyze the sensitivity of the magnetic field components and synthetic signals to electric anisotropy.Then,azimuthal EM LWD responses in anisotropic layered formations are simulated,and the sensitivities to formation parameters for compensated and uncompensated tool configurations are comparatively analyzed.Finally,we discuss the effects of the inversion model on bed boundary inversion in anisotropic formations.Numerical simulation and inversion results show that azimuthal EM LWD can be significantly affected by electric anisotropy.Fortunately,by using a symmetrical compensation configuration,the sensitivity of the geosignals to electric anisotropy can be suppressed,and the boundary detection capability can be further enhanced.Anisotropy normally gives rise to separated resistivity curves and abnormal"horns";moreover,complicated nonlinear distortion can also arise in geosignals as the tool approaches a bed boundary.If anisotropy effects are ignored in the inversion process,the estimated bed boundary and formation resistivity are usually unreliable,which may mislead geosteering decisions.
基金supported by the National Science and Technology Major Project (Grant No. 2011ZX05020)
文摘This paper investigates the relation between the induced electromotive force measured by induction logging tool and the apparent conductivity, and the relation between the apparent conductivity and the formation true conductivity. Assuming the conductivity in Green's function to be the function of the field point coordinate, the apparent conductivity expression of electric-field intensity is derived using Green's formula, and the integral equation has been established representing the relationship of the apparent conductivity with the true conductivity under this condition. The integral equation is analyzed and then leads to the conclusion that the equivalent conductivity is the apparent conductivity and the values of the apparent conductivity function contain the true conductivity, and the method derived the true conductivity from the apparent conductivity around the well axis is put forward. The validity of the approach given in this paper is verified through numerical calculation. On the basis of above means, the transmitter coil produces an electric-field distribution in formation at every point where the induction logging tool moves along a wellbore, and a number of the receiving coils obtain an apparent conductivity distribution; this is what induction electric-field logging is.