Metastable 40Ar* atoms are produced in the two metastable states 3p54s [3/2]2 and 3p5 4s′ [1/2]0 in a pulsed DC discharge in a beam, and are subsequently excited to the even-parity autoionizing resonance series 3pSn...Metastable 40Ar* atoms are produced in the two metastable states 3p54s [3/2]2 and 3p5 4s′ [1/2]0 in a pulsed DC discharge in a beam, and are subsequently excited to the even-parity autoionizing resonance series 3pSnp′[3/2]1,2, 3p5 np′ [1/2]1, and 3p5nf′[5/2]3 using single photon excitation with a pulsed dye laser. The excitation spectra of the even-parity autoion- izing resonance series from the metastable 40Ar* are obtained by recording the autoionized Ar+ ions with time-of-flight ion detection in the photon energy range of 32500-35600 cm-1 with an experimental bandwidth of 〈0.1 cm-1. A wealth of autoionizing resonances are newly observed, from which more precise and systematic spectroscopic data of the level energies and quantum defects are derived.展开更多
The resonator fiber optic gyro (R-FOG) ,which utilizes a resonance frequency change due to the Sagnac effect,is a promising candidate for the next generation inertial rotation sensor. In this study, an open-loop R-F...The resonator fiber optic gyro (R-FOG) ,which utilizes a resonance frequency change due to the Sagnac effect,is a promising candidate for the next generation inertial rotation sensor. In this study, an open-loop R-FOG is set up using phase modulation spectroscopy. First,the demodulation curve is obtained using a lock-in amplifier. From the demodulation signal,a gyro dynamic range of ± 4.2rad/s is obtained. Then,using different phase modulation frequencies,the open-loop gyro output signal is measured when the gyro is rotated clockwise or counterclockwise. The bias drift as a function of time is also measured. The fluctuation of the output over 5s is about 0.02rad/s. The drift can be reduced by taking countermeasures against system noise.展开更多
Using renewable energy to drive carbon dioxide reduction reaction(CO_(2)RR)electrochemically into chemicals with high energy density is an efficient way to achieve carbon neutrality,where the effective utilization of ...Using renewable energy to drive carbon dioxide reduction reaction(CO_(2)RR)electrochemically into chemicals with high energy density is an efficient way to achieve carbon neutrality,where the effective utilization of CO_(2) and the storage of renewable energy are realized.The reactivity and selectivity of CO_(2)RR depend on the structure and composition of the catalyst,applied potential,electrolyte,and pH of the solution.Besides,multiple electron and proton transfer steps are involved in CO_(2)RR,making the reaction pathways even more complicated.In pursuit of molecular-level insights into the CO_(2)RR processes,in situ vibrational methods including infrared,Raman and sum frequency generation spectroscopies have been deployed to monitor the dynamic evolution of catalyst structure,to identify reactive intermediates as well as to investigate the effect of local reaction environment on CO_(2)RR performance.This review summarizes key findings from recent electrochemical vibrational spectrosopic studies of CO_(2)RR in addressing the following issues:the CO_(2)RR mechanisms of different pathways,the role of surface-bound CO species,the compositional and structural effects of catalysts and electrolytes on CO_(2)RR activity and selectivity.Our perspectives on developing high sensitivity wide-frequency infrared spectroscopy,coupling different spectroelectrochemical methods and implementing operando vibrational spectroscopies to tackle the CO_(2)RR process in pilot reactors are offered at the end.展开更多
On account of excellent thermal physical properties, molten nitrates/nitrites salt has been widely employed in heat transfer and thermal storage industry, especially in concentrated solar power system. The thermal sta...On account of excellent thermal physical properties, molten nitrates/nitrites salt has been widely employed in heat transfer and thermal storage industry, especially in concentrated solar power system. The thermal stability study of molten nitrate/nitrite salt is of great importance for this system, and the decomposition mechanism is the most complicated part of it. The oxide species O2^2- and O2^- were considered as intermediates in molten KNO3-NaNO3 while hard to been detected in high temperature molten salt due to their trace concentration and low stability. In this work, the homemade in situ high temperature UV- Vis instrument and a commercial electron paramagnetic resonance were utilized to supply evidence for the formation of superoxide during a slow decomposition process of heat transfer salt (HTS, 53 wt% KNO3/40 wt% NaNO2/7 wt% NaNO3). It is found that the superoxide is more easily generated from molten NaNO2 compared to NaNO3, and it has an absorption band at 420-440 nm in HTS which red shifts as temperature increases. The band is assigned to charge-transfer transition in NaO2 or KO2, responsible for the yellow color of the molten nitrate/nitrite salt. Furthermore, the UV absorption bands of molten NaNO2 and NANO3 are also obtained and compared with that of HTS.展开更多
MXenes,a new family of two-dimensional(2D)materials,have received extensive interest due to their fascinating physicochemical properties,such as outstandinglight-to-heat conversion efficiency.However,the photothermal ...MXenes,a new family of two-dimensional(2D)materials,have received extensive interest due to their fascinating physicochemical properties,such as outstandinglight-to-heat conversion efficiency.However,the photothermal conversion mechanism of MXenes is still poorly understood.Here,by using femtosecond visible and mid-infrared transient absorption spectroscopy,the electronic energy dissipation dynamics of MXene(Ti_(3)C_(2)T_(x))nanosheets dispersed in various solvents are carefully studied.Our results indicate that the lifetime of photoexcited MXene is strongly dependent on the surrounding environment.Especially,the interfacial electron-vibration coupling between the MXene nanosheets and the adjacent solvent molecules is directly observed following the ultrafast photoexcitation of MXene.It suggests that the interfacial interactions at the MXene-solvent interface play a critical role in the ultrafast energy transport dynamics of MXene,which offers a potentially feasible route for tailoring the light conversion properties of 2D systems.展开更多
The electron paramagnetic resonance (EPR) parameters (zero-Geld splitting Dand g factors g_‖, g_⊥) of Cr~(4+) ions in Ca_2 GeO_4 crystals have been calculated from thecomplete high-order perturbation formulas of EPR...The electron paramagnetic resonance (EPR) parameters (zero-Geld splitting Dand g factors g_‖, g_⊥) of Cr~(4+) ions in Ca_2 GeO_4 crystals have been calculated from thecomplete high-order perturbation formulas of EPR parameters for a 3d~2 ion in trigonal MX_4clusters. In these formulas, in addition to the contributions to EPR parameters from the widely usedcrystal-field (CF) mechanism, the contributions from the charge-transfer (CT) mechanism (which areoften neglected) are included. From the calculations, it is found that for the high valence state3d~n ions in crystals, the reasonable explanation of EPR parameters (in particular, the g factors)should take both the CF and CT mechanisms into account.展开更多
A range of new compounds such as N1,N4-bis(diphenylmethlene)benzene-l,4-diamine zirconium (IV) chloride [{(Ar)2NC6HsN(Ar)z}ZrCl4] (Ar = C6H5) complex counting the chelating amine and chloride in position tra...A range of new compounds such as N1,N4-bis(diphenylmethlene)benzene-l,4-diamine zirconium (IV) chloride [{(Ar)2NC6HsN(Ar)z}ZrCl4] (Ar = C6H5) complex counting the chelating amine and chloride in position trans have been prepared. Well-defined NI,N4-bis(diphenylmethlene)benzene-l,4-diamine zirconium (IV) chloride [{(Ar)2NC6H5N(Ar)2}ZrCl4] (Ar = C6H5) was obtained by stoichiometric addition of {(Ar)2NC6H5N(Ar)2} (Ar = C6H5) and {ZrC14} in ethanol at reflex temperature. IR, 1H NMR, electronic properties using hyperchem program study has been improved for this compound such as bond distance, and this compound was also defined as electric conductivity which proves to be useful for conductively compound.展开更多
The 1-(3-methoxycarbonyl) propyl-1-phenyl-(6,6)C61 (also called PCBM) is a C60 derivative widely used as an electron-acceptor in organic solar cells. To date, all the infrared spectra reported are experimental, ...The 1-(3-methoxycarbonyl) propyl-1-phenyl-(6,6)C61 (also called PCBM) is a C60 derivative widely used as an electron-acceptor in organic solar cells. To date, all the infrared spectra reported are experimental, mainly because of the calculations needed to study these structures are highly time-consuming. In this report we address for the first time the infrared spectrum calculation of PCBM with Cs symmetry by using the PW91/dnp level as implemented in the Dmol3 code. In this calculation we have found two intense peaks in the IR spectrum, that agree fairly with the 1187 and 1787 cm^-1 measured experimentally.展开更多
In situ strain photoluminescence (PL) and Raman spectroscopy have been employed to exploit the evolutions of the electronic band structure and lattice vibrational responses of chemical vapor deposition (CVD)-grown...In situ strain photoluminescence (PL) and Raman spectroscopy have been employed to exploit the evolutions of the electronic band structure and lattice vibrational responses of chemical vapor deposition (CVD)-grown monolayer tungsten disulphide (WS2) under uniaxial tensile strain. Observable broadening and appearance of an extra small feature at the longer-wavelength side shoulder of the PL peak occur under 2.5% strain, which could indicate the direct-indirect bandgap transition and is further confirmed by our density-functional-theory calculations. As the strain increases further, the spectral weight of the indirect transition gradually increases. Over the entire strain range, with the increase of the strain, the light emissions corresponding to each optical transition, such as the direct bandgap transition (K-K) and indirect bandgap transition (F-K, ≥2.5%), exhibit a monotonous linear redshift. In addition, the binding energy of the indirect transition is found to be larger than that of the direct transition, and the slight lowering of the trion dissociation energy with increasing strain is observed. The strain was used to modulate not only the electronic band structure but also the lattice vibrations. The softening and splitting of the in-plane E' mode is observed under uniaxial tensile strain, and polarization-dependent Raman spectroscopy confirms the observed zigzag-oriented edge of WS2 grown by CVD in previous studies. These findings enrich our understanding of the strained states of monolayer transition-metal dichalcogenide (TMD) materials and lay a foundation for developing applications exploiting their strain-dependent optical properties, including the strain detection and light-emission modulation of such emerging two-dimensional TMDs.展开更多
Switching on/off single-molecule magnets(SMMs)at room temperature is still a challenge in moleculebased magnets.Herein,two photochromic Ln-based(Ln=Dy,Tb)phosphonate coordinated polymers were synthesized with regulabl...Switching on/off single-molecule magnets(SMMs)at room temperature is still a challenge in moleculebased magnets.Herein,two photochromic Ln-based(Ln=Dy,Tb)phosphonate coordinated polymers were synthesized with regulable SMM behavior.The reversible room-temperature photo-coloration was an electron transfer process with a generation of relatively stable radicals,characterized by structural analyses,ultraviolet-visible,luminescence and electron spin resonance spectra and magnetic measurements.Importantly,owing to the antiferromagnetic coupling interactions between Ln^(3+) ions and photogenerated radicals,the room-temperature light irradiation surprisingly switched off the SMM behavior,showing the first example of radicalquenched SMMs in the molecule-based magnets.Moreover,the silient SMM behavior could be recovered after eliminating photogenerated radicals via heat treatment,showing a reversible off/on switch of SMMs via light and heat.This work constructs a system for switching off/on SMMs through electron transfer photochromism,providing a visual operation way via naked-eye-detectable coloration for the switchable SMMs.展开更多
The rates of protein folding with photon absorption or emission and the cross section of photon-protein inelastic scattering are calculated from quantum folding theory by use of a field-theoretical method.All protein ...The rates of protein folding with photon absorption or emission and the cross section of photon-protein inelastic scattering are calculated from quantum folding theory by use of a field-theoretical method.All protein photo-folding processes are compared with common protein folding without the interaction of photons(non-radiative folding).It is demonstrated that there exists a common factor(thermo-averaged overlap integral of the vibration wave function,TAOI) for protein folding and protein photo-folding.Based on this finding it is predicted that(i) the stimulated photo-folding rates and the photon-protein resonance Raman scattering sections show the same temperature dependence as protein folding;(ii) the spectral line of the electronic transition is broadened to a band that includes an abundant vibration spectrum without and with conformational transitions,and the width of each vibration spectral line is largely reduced.The particular form of the folding rate-temperature relation and the abundant spectral structure imply the existence of quantum tunneling between protein conformations in folding and photo-folding that demonstrates the quantum nature of the motion of the conformational-electronic system.展开更多
A multireference configuration interaction (MRCI) study has been carried out on the LiCl molecule. The potential energy has been calculated over a wide range of internuclear separation for the 21 low-lying electroni...A multireference configuration interaction (MRCI) study has been carried out on the LiCl molecule. The potential energy has been calculated over a wide range of internuclear separation for the 21 low-lying electronic states of the LiCl molecule dissociating into Li (^2S, ^2p, ^3S)+Cl (^2p). The (4)^1∑^+, (3)∏, 1-3^3∑^+, 1-3^3∏, 1,3Δ, ^1,3∑^-, (5)^1∑^+,(4)^3∑^+, (4)^3∏, (4)^3∏ excited states are studied for the first time in theory. Molecular spectroscopic constants .(Re, De,ωe, ωeΧe,Be and αe) have been derived for the 9 bound states (X^1∑^+, (3)^1∑^+, (2)^3∑^+, ^1,3Δ, ^1,3∑^-, (4)^∏, (4)^3∏) with a regular shape, and the spectroscopic constants of ground states X^1 ∑^+ are in good agreement with available experimental and theoretical values. The relative differences between experimental values and our values for Re, De, ωe, ωeΧe, Be and α3 are 1.02%, 0.60%, 1.72%, 9.46%, 2.0%, and 0.75%, respectively. Moreover, vibrational levels of 9 bound states, which have not been investigated experimentally, are computed.展开更多
Transmission spectroscopy of two Nb double superconducting split-ring samples with different thicknesses on MgO substrates was measured by a continuous Tera-Hertz spectrometer.The transmission curves of two different ...Transmission spectroscopy of two Nb double superconducting split-ring samples with different thicknesses on MgO substrates was measured by a continuous Tera-Hertz spectrometer.The transmission curves of two different samples with the thicknesses of 50 and 150 nm at 7.5 K show dips at 480,545 GHz,respectively,which origin from the different capacities and inductances of the samples.For the sample of 50 nm,the dip shifts to lower frequency,also decreases in depth and increases in width with temperature or field increasing below T c of Nb film,while the sample of 150 nm does not show such a phenomenon.This thickness-dependent transmission behavior is due to the kinetic inductance and conductivity change of superfluid electrons in Nb film and may suggest a practical tunable THz filter based on the thinner samples.展开更多
The even-parity autoionizing resonance series 4p^5np' [3/2] 1,2, [ 1/2] 1, and 4p^2nf' [5/213 of krytpon have been investigated by laser excitation from the two metastable states 4p55s [3/2]2 and 4p^55s' [1/2]0 in ...The even-parity autoionizing resonance series 4p^5np' [3/2] 1,2, [ 1/2] 1, and 4p^2nf' [5/213 of krytpon have been investigated by laser excitation from the two metastable states 4p55s [3/2]2 and 4p^55s' [1/2]0 in the photon energy region of 2900(P40000 cm^-1 at experimental bandwidth of -0.1 cm-1. The excitation spectra of the even-parity autoionizing resonance series, most of which are experimentally studied for the first time in this work, show typical asymmetric line shapes. Complementary information on level energies, quantum defects, line profile indices and resonance widths, resonance lifetimes and reduced widths of the auto- ionizing resonances are derived by Fano-type line-shape analyses of the experimental results. Results from this work indicate that the line profile index (q) and the resonance width (F) are approximately proportional to the effective principal quantum number (n*); the line separation of the 4p^5np' autoionizing resonances is also in good agreement with theoretical model展开更多
文摘Metastable 40Ar* atoms are produced in the two metastable states 3p54s [3/2]2 and 3p5 4s′ [1/2]0 in a pulsed DC discharge in a beam, and are subsequently excited to the even-parity autoionizing resonance series 3pSnp′[3/2]1,2, 3p5 np′ [1/2]1, and 3p5nf′[5/2]3 using single photon excitation with a pulsed dye laser. The excitation spectra of the even-parity autoion- izing resonance series from the metastable 40Ar* are obtained by recording the autoionized Ar+ ions with time-of-flight ion detection in the photon energy range of 32500-35600 cm-1 with an experimental bandwidth of 〈0.1 cm-1. A wealth of autoionizing resonances are newly observed, from which more precise and systematic spectroscopic data of the level energies and quantum defects are derived.
文摘The resonator fiber optic gyro (R-FOG) ,which utilizes a resonance frequency change due to the Sagnac effect,is a promising candidate for the next generation inertial rotation sensor. In this study, an open-loop R-FOG is set up using phase modulation spectroscopy. First,the demodulation curve is obtained using a lock-in amplifier. From the demodulation signal,a gyro dynamic range of ± 4.2rad/s is obtained. Then,using different phase modulation frequencies,the open-loop gyro output signal is measured when the gyro is rotated clockwise or counterclockwise. The bias drift as a function of time is also measured. The fluctuation of the output over 5s is about 0.02rad/s. The drift can be reduced by taking countermeasures against system noise.
文摘Using renewable energy to drive carbon dioxide reduction reaction(CO_(2)RR)electrochemically into chemicals with high energy density is an efficient way to achieve carbon neutrality,where the effective utilization of CO_(2) and the storage of renewable energy are realized.The reactivity and selectivity of CO_(2)RR depend on the structure and composition of the catalyst,applied potential,electrolyte,and pH of the solution.Besides,multiple electron and proton transfer steps are involved in CO_(2)RR,making the reaction pathways even more complicated.In pursuit of molecular-level insights into the CO_(2)RR processes,in situ vibrational methods including infrared,Raman and sum frequency generation spectroscopies have been deployed to monitor the dynamic evolution of catalyst structure,to identify reactive intermediates as well as to investigate the effect of local reaction environment on CO_(2)RR performance.This review summarizes key findings from recent electrochemical vibrational spectrosopic studies of CO_(2)RR in addressing the following issues:the CO_(2)RR mechanisms of different pathways,the role of surface-bound CO species,the compositional and structural effects of catalysts and electrolytes on CO_(2)RR activity and selectivity.Our perspectives on developing high sensitivity wide-frequency infrared spectroscopy,coupling different spectroelectrochemical methods and implementing operando vibrational spectroscopies to tackle the CO_(2)RR process in pilot reactors are offered at the end.
基金This work was supported by the "Strategic Priority Research Program, TMSR" of the Chinese Academy of Sciences (No.XD02002400), the National Natural Science Foundation of China (No.51506214), the Hundred Talents Program, CAS and Shanghai Pujiang Program.
文摘On account of excellent thermal physical properties, molten nitrates/nitrites salt has been widely employed in heat transfer and thermal storage industry, especially in concentrated solar power system. The thermal stability study of molten nitrate/nitrite salt is of great importance for this system, and the decomposition mechanism is the most complicated part of it. The oxide species O2^2- and O2^- were considered as intermediates in molten KNO3-NaNO3 while hard to been detected in high temperature molten salt due to their trace concentration and low stability. In this work, the homemade in situ high temperature UV- Vis instrument and a commercial electron paramagnetic resonance were utilized to supply evidence for the formation of superoxide during a slow decomposition process of heat transfer salt (HTS, 53 wt% KNO3/40 wt% NaNO2/7 wt% NaNO3). It is found that the superoxide is more easily generated from molten NaNO2 compared to NaNO3, and it has an absorption band at 420-440 nm in HTS which red shifts as temperature increases. The band is assigned to charge-transfer transition in NaO2 or KO2, responsible for the yellow color of the molten nitrate/nitrite salt. Furthermore, the UV absorption bands of molten NaNO2 and NANO3 are also obtained and compared with that of HTS.
基金supported by the National Key Research and Development Program of China(No.2018YFA0208700)the National Natural Science Foundation of China (No.21773302)the Strategic Priority Research Program of Chinese Academy of Sciences (No.XDB30000000)
文摘MXenes,a new family of two-dimensional(2D)materials,have received extensive interest due to their fascinating physicochemical properties,such as outstandinglight-to-heat conversion efficiency.However,the photothermal conversion mechanism of MXenes is still poorly understood.Here,by using femtosecond visible and mid-infrared transient absorption spectroscopy,the electronic energy dissipation dynamics of MXene(Ti_(3)C_(2)T_(x))nanosheets dispersed in various solvents are carefully studied.Our results indicate that the lifetime of photoexcited MXene is strongly dependent on the surrounding environment.Especially,the interfacial electron-vibration coupling between the MXene nanosheets and the adjacent solvent molecules is directly observed following the ultrafast photoexcitation of MXene.It suggests that the interfacial interactions at the MXene-solvent interface play a critical role in the ultrafast energy transport dynamics of MXene,which offers a potentially feasible route for tailoring the light conversion properties of 2D systems.
文摘The electron paramagnetic resonance (EPR) parameters (zero-Geld splitting Dand g factors g_‖, g_⊥) of Cr~(4+) ions in Ca_2 GeO_4 crystals have been calculated from thecomplete high-order perturbation formulas of EPR parameters for a 3d~2 ion in trigonal MX_4clusters. In these formulas, in addition to the contributions to EPR parameters from the widely usedcrystal-field (CF) mechanism, the contributions from the charge-transfer (CT) mechanism (which areoften neglected) are included. From the calculations, it is found that for the high valence state3d~n ions in crystals, the reasonable explanation of EPR parameters (in particular, the g factors)should take both the CF and CT mechanisms into account.
文摘A range of new compounds such as N1,N4-bis(diphenylmethlene)benzene-l,4-diamine zirconium (IV) chloride [{(Ar)2NC6HsN(Ar)z}ZrCl4] (Ar = C6H5) complex counting the chelating amine and chloride in position trans have been prepared. Well-defined NI,N4-bis(diphenylmethlene)benzene-l,4-diamine zirconium (IV) chloride [{(Ar)2NC6H5N(Ar)2}ZrCl4] (Ar = C6H5) was obtained by stoichiometric addition of {(Ar)2NC6H5N(Ar)2} (Ar = C6H5) and {ZrC14} in ethanol at reflex temperature. IR, 1H NMR, electronic properties using hyperchem program study has been improved for this compound such as bond distance, and this compound was also defined as electric conductivity which proves to be useful for conductively compound.
文摘The 1-(3-methoxycarbonyl) propyl-1-phenyl-(6,6)C61 (also called PCBM) is a C60 derivative widely used as an electron-acceptor in organic solar cells. To date, all the infrared spectra reported are experimental, mainly because of the calculations needed to study these structures are highly time-consuming. In this report we address for the first time the infrared spectrum calculation of PCBM with Cs symmetry by using the PW91/dnp level as implemented in the Dmol3 code. In this calculation we have found two intense peaks in the IR spectrum, that agree fairly with the 1187 and 1787 cm^-1 measured experimentally.
基金This work is supported by the Singapore National Research Foundation NRF RF Award No. NRFRF2010- 07, MOE Tier 2 MOE2012-T2-2-049, A'Star SERC PSF grant No. 1321202101, and MOE Tier 1 MOE2013- T1-2-235. W. Huang acknowledges the support of the National Basic Research Program of China (973 Program) (No. 2015CB932200), the National Natural Science Foundation of China (NSFC) (Grant Nos. 21144004, 20974046, 21101095, 21003076, 20774043, 51173081, 50428303, 61136003, and 50428303), the Ministry of Education of China (No. IRT1148), the NSF of Jiangsu Province (Grant Nos. SBK201122680, 11KJB510017, BK2008053, 11KJB510017, BK2009025, 10KJB510013, and BZ2010043), and NUPT (Nos. NY210030 and NY211022). J. R Wang is grateful for the NSFC (No. 11474164), NSF of Jiangsu province (No. BK20131413), and the Jiangsu Specially-Appointed Professor program. Y. L. Wang thanks Luqing Wang, Dr. Xiaolong Zou, and Dr. Alex Kutana for the constructive discussion.
文摘In situ strain photoluminescence (PL) and Raman spectroscopy have been employed to exploit the evolutions of the electronic band structure and lattice vibrational responses of chemical vapor deposition (CVD)-grown monolayer tungsten disulphide (WS2) under uniaxial tensile strain. Observable broadening and appearance of an extra small feature at the longer-wavelength side shoulder of the PL peak occur under 2.5% strain, which could indicate the direct-indirect bandgap transition and is further confirmed by our density-functional-theory calculations. As the strain increases further, the spectral weight of the indirect transition gradually increases. Over the entire strain range, with the increase of the strain, the light emissions corresponding to each optical transition, such as the direct bandgap transition (K-K) and indirect bandgap transition (F-K, ≥2.5%), exhibit a monotonous linear redshift. In addition, the binding energy of the indirect transition is found to be larger than that of the direct transition, and the slight lowering of the trion dissociation energy with increasing strain is observed. The strain was used to modulate not only the electronic band structure but also the lattice vibrations. The softening and splitting of the in-plane E' mode is observed under uniaxial tensile strain, and polarization-dependent Raman spectroscopy confirms the observed zigzag-oriented edge of WS2 grown by CVD in previous studies. These findings enrich our understanding of the strained states of monolayer transition-metal dichalcogenide (TMD) materials and lay a foundation for developing applications exploiting their strain-dependent optical properties, including the strain detection and light-emission modulation of such emerging two-dimensional TMDs.
基金supported by the National Natural Science Foundation of China(21901133,22171155 and 22071126)the State Key Laboratory of Fine Chemicals(KF1905)。
文摘Switching on/off single-molecule magnets(SMMs)at room temperature is still a challenge in moleculebased magnets.Herein,two photochromic Ln-based(Ln=Dy,Tb)phosphonate coordinated polymers were synthesized with regulable SMM behavior.The reversible room-temperature photo-coloration was an electron transfer process with a generation of relatively stable radicals,characterized by structural analyses,ultraviolet-visible,luminescence and electron spin resonance spectra and magnetic measurements.Importantly,owing to the antiferromagnetic coupling interactions between Ln^(3+) ions and photogenerated radicals,the room-temperature light irradiation surprisingly switched off the SMM behavior,showing the first example of radicalquenched SMMs in the molecule-based magnets.Moreover,the silient SMM behavior could be recovered after eliminating photogenerated radicals via heat treatment,showing a reversible off/on switch of SMMs via light and heat.This work constructs a system for switching off/on SMMs through electron transfer photochromism,providing a visual operation way via naked-eye-detectable coloration for the switchable SMMs.
基金supported by the National Natural Science Foundation of China (Grant Nos. 202015 and 205015)
文摘The rates of protein folding with photon absorption or emission and the cross section of photon-protein inelastic scattering are calculated from quantum folding theory by use of a field-theoretical method.All protein photo-folding processes are compared with common protein folding without the interaction of photons(non-radiative folding).It is demonstrated that there exists a common factor(thermo-averaged overlap integral of the vibration wave function,TAOI) for protein folding and protein photo-folding.Based on this finding it is predicted that(i) the stimulated photo-folding rates and the photon-protein resonance Raman scattering sections show the same temperature dependence as protein folding;(ii) the spectral line of the electronic transition is broadened to a band that includes an abundant vibration spectrum without and with conformational transitions,and the width of each vibration spectral line is largely reduced.The particular form of the folding rate-temperature relation and the abundant spectral structure imply the existence of quantum tunneling between protein conformations in folding and photo-folding that demonstrates the quantum nature of the motion of the conformational-electronic system.
文摘A multireference configuration interaction (MRCI) study has been carried out on the LiCl molecule. The potential energy has been calculated over a wide range of internuclear separation for the 21 low-lying electronic states of the LiCl molecule dissociating into Li (^2S, ^2p, ^3S)+Cl (^2p). The (4)^1∑^+, (3)∏, 1-3^3∑^+, 1-3^3∏, 1,3Δ, ^1,3∑^-, (5)^1∑^+,(4)^3∑^+, (4)^3∏, (4)^3∏ excited states are studied for the first time in theory. Molecular spectroscopic constants .(Re, De,ωe, ωeΧe,Be and αe) have been derived for the 9 bound states (X^1∑^+, (3)^1∑^+, (2)^3∑^+, ^1,3Δ, ^1,3∑^-, (4)^∏, (4)^3∏) with a regular shape, and the spectroscopic constants of ground states X^1 ∑^+ are in good agreement with available experimental and theoretical values. The relative differences between experimental values and our values for Re, De, ωe, ωeΧe, Be and α3 are 1.02%, 0.60%, 1.72%, 9.46%, 2.0%, and 0.75%, respectively. Moreover, vibrational levels of 9 bound states, which have not been investigated experimentally, are computed.
基金supported by the Science Foundation of the Chinese Academy of Sciences (Grant No.KJCX2-SW-W20)the National Basic Research Program of China (Grant No.2011CB921702)
文摘Transmission spectroscopy of two Nb double superconducting split-ring samples with different thicknesses on MgO substrates was measured by a continuous Tera-Hertz spectrometer.The transmission curves of two different samples with the thicknesses of 50 and 150 nm at 7.5 K show dips at 480,545 GHz,respectively,which origin from the different capacities and inductances of the samples.For the sample of 50 nm,the dip shifts to lower frequency,also decreases in depth and increases in width with temperature or field increasing below T c of Nb film,while the sample of 150 nm does not show such a phenomenon.This thickness-dependent transmission behavior is due to the kinetic inductance and conductivity change of superfluid electrons in Nb film and may suggest a practical tunable THz filter based on the thinner samples.
基金financially supported by the National Natural Science Foundation of China(51007092)
文摘The even-parity autoionizing resonance series 4p^5np' [3/2] 1,2, [ 1/2] 1, and 4p^2nf' [5/213 of krytpon have been investigated by laser excitation from the two metastable states 4p55s [3/2]2 and 4p^55s' [1/2]0 in the photon energy region of 2900(P40000 cm^-1 at experimental bandwidth of -0.1 cm-1. The excitation spectra of the even-parity autoionizing resonance series, most of which are experimentally studied for the first time in this work, show typical asymmetric line shapes. Complementary information on level energies, quantum defects, line profile indices and resonance widths, resonance lifetimes and reduced widths of the auto- ionizing resonances are derived by Fano-type line-shape analyses of the experimental results. Results from this work indicate that the line profile index (q) and the resonance width (F) are approximately proportional to the effective principal quantum number (n*); the line separation of the 4p^5np' autoionizing resonances is also in good agreement with theoretical model