A novel micro-machined diamagnetic stable.levitation system (MDSLS) which is composed of a free permanent magnetic rotor, a ring lifting permanent magnet and two diamagnetic stabilizers was presented. The static and...A novel micro-machined diamagnetic stable.levitation system (MDSLS) which is composed of a free permanent magnetic rotor, a ring lifting permanent magnet and two diamagnetic stabilizers was presented. The static and dynamic stable characters of MDSLS were analyzed. The coupled non-linear differential equations were used to describe six-degree-of-freedom motion of the levitated rotor, and the equivalent surface current and combined dia- magnetic image current method were utilized to model the interaction forces and torques between the lifting perma- nent magnet and rotor permanent magnet and also between the rotor permanent magnet and diamagnetic sub- strates. Because of difficulty to get analytical solution, the numerical calculation based on Runge-Kutta method was used to solve the dynamic model. The vibration frequencies were identified b~ fast Fourier transform (FFT) analysis. According to their resonance characteristics and parameters, the translational and angular dynamic stiff- ness were also calculated. The results show that the levitation of the rotor in MDSLS is stable, and the MDSLS is potential for the application in levitation inertial sensor.展开更多
基金The National Natural Science Foundation ofChina (No60402003)The Weaponry Pre-liminary Research Foundation of China (No9140A09020706JW0314)
文摘A novel micro-machined diamagnetic stable.levitation system (MDSLS) which is composed of a free permanent magnetic rotor, a ring lifting permanent magnet and two diamagnetic stabilizers was presented. The static and dynamic stable characters of MDSLS were analyzed. The coupled non-linear differential equations were used to describe six-degree-of-freedom motion of the levitated rotor, and the equivalent surface current and combined dia- magnetic image current method were utilized to model the interaction forces and torques between the lifting perma- nent magnet and rotor permanent magnet and also between the rotor permanent magnet and diamagnetic sub- strates. Because of difficulty to get analytical solution, the numerical calculation based on Runge-Kutta method was used to solve the dynamic model. The vibration frequencies were identified b~ fast Fourier transform (FFT) analysis. According to their resonance characteristics and parameters, the translational and angular dynamic stiff- ness were also calculated. The results show that the levitation of the rotor in MDSLS is stable, and the MDSLS is potential for the application in levitation inertial sensor.