We report a theoretic study on modulating the spin polarization of charge current in a mesoscopic fourterminal device of cross structure by using the inverse spin hall effect. The scattering region of device is a two-...We report a theoretic study on modulating the spin polarization of charge current in a mesoscopic fourterminal device of cross structure by using the inverse spin hall effect. The scattering region of device is a two-dimensional electron gas (2DEG) with Rashba spin orbital interaction (RSOI), one of lead is ferromagnetic metal and other three leads are spin-degenerate normal metals. By using Landauer-Biittiker formalism, we found that when a longitudinal charge current flows through 2DEG scattering region from FM lead by external bias, the transverse current can be either a pure spin current or full-polarized charge current due to the combined effect of spin hall effect and its inverse process, and the polarization of this transverse current can be easily controlled by several device parameters such as the Fermi energy, ferromagnetic magnetization, and the RSOI constant. Our method may pave a new way to control the spin polarization of a charge current.展开更多
The paper deals with a new model of linear induction motor (LIM) to improve the reliability of the system. Based on the normal equation circuit of LIM considering the dynamic end effect, an equivalent circuit model wi...The paper deals with a new model of linear induction motor (LIM) to improve the reliability of the system. Based on the normal equation circuit of LIM considering the dynamic end effect, an equivalent circuit model with compensation of large end effect is constructed when the end effect force at synchronism is of braking character. The equivalent circuit model is used for secondary-flux oriented control of LIM. Single neuron network PI unit for LIM servo-drive is also discussed. The effectiveness of mathematical model for drive control is verified by simulations.展开更多
We propose a numerical solution of Faraday's law of induction based on the knowledge of the time-varying, non-uniform vector potential inside arbitrarily shaped electrical coils. The vector potential can be related t...We propose a numerical solution of Faraday's law of induction based on the knowledge of the time-varying, non-uniform vector potential inside arbitrarily shaped electrical coils. The vector potential can be related to the magnetic induction which yields the well-known form of Faraday's law. The algorithm applies for non-retarding fields within the quasi-stationary regime. The model is intended to help to understand the behavior of electromagnetic fields inside the discharge chambers of radio-frequency ion thrusters. This provides a basis for modeling an inductively-coupled plasma which is kept burning by absorbing electromagnetic energy. In the long run, this plasma model will be used to support development processes of electric and electronic control devices which are needed for driving radio-frequency ion thrusters more efficiently. To predict the induced radio frequency fields more precisely, the skin effect along the coil wire is modeled. Furthermore, an impedance model of the coil, which incorporates the skin effect, is introduced. The simulated data are compared to measured values obtained by a generic electric field probe. Although the probe was uncalibrated, the observed values were highly similar to the expected values as determined by the numerical solution.展开更多
High precise, high voltage pulse generator made up of high-power IGBT and pulse transformers controlled by a computer are described. A simple main circuit topology employed in this pulse generator can reduce the cost ...High precise, high voltage pulse generator made up of high-power IGBT and pulse transformers controlled by a computer are described. A simple main circuit topology employed in this pulse generator can reduce the cost meanwhile it still meets special requirements for pulsed electric fields (PEFs) in food process. The pulse generator utilizes a complex programmable logic device (CPLD) to generate trigger signals. Pulse-frequency, pulse-width and pulse-number are controlled via RS232 bus by a computer. The high voltage pulse generator well suits to the application for fluid food non-thermal effect in pulsed electric fields, for it can increase and decrease by the step length 1.展开更多
Air pollution is harm and discomfort to human or other living organisms, it also causes damage to the environment. The aim of this project was to study the effect of air pollutions on structure and pollen grains devel...Air pollution is harm and discomfort to human or other living organisms, it also causes damage to the environment. The aim of this project was to study the effect of air pollutions on structure and pollen grains development in Chenopodium album. Anthers of Chenopodium album L. were collected at different stages of development from control (less polluted) and polluted areas (mainly SO2, NO2, CO and APM). Structure and development of pollen grains were studied and compared. The effects of pollution on pollen structure was investigated under Light and Scanning electron microscopy and the results showed that when pollen grains were exposed to polluted air they became abnormality in form and covered with large amounts of pollutants compared to control ones. Pollen abnormalities were seen as irregularity, shrinkage, thinning and breakage of the exine. Cellular material release was induced also. The data presented suggest that prolonged exposures of plants to air pollution may cause different biological effects at the cellular tissue and organ levels.展开更多
A recently emerging family of smart materials,photostrictive materials,exhibit large photostriction under uniform illumination of high-energy light.This photostriction mechanism arises from a superposition phenomenon ...A recently emerging family of smart materials,photostrictive materials,exhibit large photostriction under uniform illumination of high-energy light.This photostriction mechanism arises from a superposition phenomenon of photovoltaic and converse piezoelectric effects.A photostrictive type of opto-electromechanical actuator activated by high-energy lights can introduce actuation and control effects without hard-wired connections.The control light intensity applied to the actuator is proportional to the transverse velocity at a positioned point,which is measured by a laser vibrometer.In this paper,photostrictive films are numerically analyzed to evaluate their use as wireless actuators for future remote vibration control of flexible structures.A novel opto-electromechanical solid shell finite element formulation is developed for accurate analysis of the multiple physics effects of photovoltaic,pyroelectric and thermal expansion of photostrictive materials.Available experimental data and analytical solutions have been used to verify the present finite element results.The simulation in this study demonstrates that the present formulation is very reliable,accurate and also computationally efficient and that the use of photostrictive actuators can provide good controllability of structural vibration.展开更多
We demonstrate very large and uniform temperature gradients up to about 1 K every 100 nm, in an architecture which is compatible with the field-effect control of the nanostructure under test. The temperature gradients...We demonstrate very large and uniform temperature gradients up to about 1 K every 100 nm, in an architecture which is compatible with the field-effect control of the nanostructure under test. The temperature gradients demonstrated greatly exceed those typically obtainable with standard resistive heaters fabricated on top of the oxide layer. The nanoheating platform is demonstrated in the specific case of a short-nanowire device.展开更多
基金Supported by National Natural Science Foundation of China under Grant No.10704016Natural Science Foundation of Jiangsu Province under Grant Nos.BK2007100Ministry of Education of China under Grant No.MEC-20070286036
文摘We report a theoretic study on modulating the spin polarization of charge current in a mesoscopic fourterminal device of cross structure by using the inverse spin hall effect. The scattering region of device is a two-dimensional electron gas (2DEG) with Rashba spin orbital interaction (RSOI), one of lead is ferromagnetic metal and other three leads are spin-degenerate normal metals. By using Landauer-Biittiker formalism, we found that when a longitudinal charge current flows through 2DEG scattering region from FM lead by external bias, the transverse current can be either a pure spin current or full-polarized charge current due to the combined effect of spin hall effect and its inverse process, and the polarization of this transverse current can be easily controlled by several device parameters such as the Fermi energy, ferromagnetic magnetization, and the RSOI constant. Our method may pave a new way to control the spin polarization of a charge current.
基金Project supported by the National Natural Science Foundation of China (No. 50477030) the Natural Science Foundation of Zheji-ang Province (No. Y105351), China
文摘The paper deals with a new model of linear induction motor (LIM) to improve the reliability of the system. Based on the normal equation circuit of LIM considering the dynamic end effect, an equivalent circuit model with compensation of large end effect is constructed when the end effect force at synchronism is of braking character. The equivalent circuit model is used for secondary-flux oriented control of LIM. Single neuron network PI unit for LIM servo-drive is also discussed. The effectiveness of mathematical model for drive control is verified by simulations.
文摘We propose a numerical solution of Faraday's law of induction based on the knowledge of the time-varying, non-uniform vector potential inside arbitrarily shaped electrical coils. The vector potential can be related to the magnetic induction which yields the well-known form of Faraday's law. The algorithm applies for non-retarding fields within the quasi-stationary regime. The model is intended to help to understand the behavior of electromagnetic fields inside the discharge chambers of radio-frequency ion thrusters. This provides a basis for modeling an inductively-coupled plasma which is kept burning by absorbing electromagnetic energy. In the long run, this plasma model will be used to support development processes of electric and electronic control devices which are needed for driving radio-frequency ion thrusters more efficiently. To predict the induced radio frequency fields more precisely, the skin effect along the coil wire is modeled. Furthermore, an impedance model of the coil, which incorporates the skin effect, is introduced. The simulated data are compared to measured values obtained by a generic electric field probe. Although the probe was uncalibrated, the observed values were highly similar to the expected values as determined by the numerical solution.
文摘High precise, high voltage pulse generator made up of high-power IGBT and pulse transformers controlled by a computer are described. A simple main circuit topology employed in this pulse generator can reduce the cost meanwhile it still meets special requirements for pulsed electric fields (PEFs) in food process. The pulse generator utilizes a complex programmable logic device (CPLD) to generate trigger signals. Pulse-frequency, pulse-width and pulse-number are controlled via RS232 bus by a computer. The high voltage pulse generator well suits to the application for fluid food non-thermal effect in pulsed electric fields, for it can increase and decrease by the step length 1.
文摘Air pollution is harm and discomfort to human or other living organisms, it also causes damage to the environment. The aim of this project was to study the effect of air pollutions on structure and pollen grains development in Chenopodium album. Anthers of Chenopodium album L. were collected at different stages of development from control (less polluted) and polluted areas (mainly SO2, NO2, CO and APM). Structure and development of pollen grains were studied and compared. The effects of pollution on pollen structure was investigated under Light and Scanning electron microscopy and the results showed that when pollen grains were exposed to polluted air they became abnormality in form and covered with large amounts of pollutants compared to control ones. Pollen abnormalities were seen as irregularity, shrinkage, thinning and breakage of the exine. Cellular material release was induced also. The data presented suggest that prolonged exposures of plants to air pollution may cause different biological effects at the cellular tissue and organ levels.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10872090, 50830201)NUAA Research Funding (Grant No. NJ2010011)
文摘A recently emerging family of smart materials,photostrictive materials,exhibit large photostriction under uniform illumination of high-energy light.This photostriction mechanism arises from a superposition phenomenon of photovoltaic and converse piezoelectric effects.A photostrictive type of opto-electromechanical actuator activated by high-energy lights can introduce actuation and control effects without hard-wired connections.The control light intensity applied to the actuator is proportional to the transverse velocity at a positioned point,which is measured by a laser vibrometer.In this paper,photostrictive films are numerically analyzed to evaluate their use as wireless actuators for future remote vibration control of flexible structures.A novel opto-electromechanical solid shell finite element formulation is developed for accurate analysis of the multiple physics effects of photovoltaic,pyroelectric and thermal expansion of photostrictive materials.Available experimental data and analytical solutions have been used to verify the present finite element results.The simulation in this study demonstrates that the present formulation is very reliable,accurate and also computationally efficient and that the use of photostrictive actuators can provide good controllability of structural vibration.
文摘We demonstrate very large and uniform temperature gradients up to about 1 K every 100 nm, in an architecture which is compatible with the field-effect control of the nanostructure under test. The temperature gradients demonstrated greatly exceed those typically obtainable with standard resistive heaters fabricated on top of the oxide layer. The nanoheating platform is demonstrated in the specific case of a short-nanowire device.