The reverse magnetohydrodynamic(MHD)energy bypass technology is a promising energy redis⁃tribution technology in the scramjet system,in augmented with a power generation equipment to supply the neces⁃sary long-distanc...The reverse magnetohydrodynamic(MHD)energy bypass technology is a promising energy redis⁃tribution technology in the scramjet system,in augmented with a power generation equipment to supply the neces⁃sary long-distance flight airframe power.In this paper,a computational model of the scramjet magnetohydrody⁃namic channel is developed and verified by using the commercial software Fluent.It is found that when the mag⁃netic induction intensity is 1,2,3,4 T,the power generation efficiency is 22.5%,22.3%,22.0%,21.5%,and decreases with the increase of the magnetic induction intensity,and the enthalpy extraction rate is 0.026%,0.1%,0.21%,0.34%,and increases with the increase of the magnetic induction intensity.The deceleration ef⁃fect of electromagnetic action on the airflow in the power channel increases with the increase of magnetic induc⁃tion intensity.The stronger the magnetic field intensity,the more obvious the decreasing effect of fluid Mach num⁃ber in the channel.The power generation efficiency decreases as the magnetic induction intensity increases and the enthalpy extraction rate is reversed.As the local currents gathering at inlet and outlet of the power generation area,total temperature and enthalpy along the flow direction do not vary linearly,and there are maximum and minimum values at inlet and outlet.Increasing the number of electrodes can effectively regulate the percentage of Joule heat dissipation,which can improve the power generation efficiency.展开更多
To find a design method for 3D active multichannel silicon microelectrode, a microstructure of active neural recording system is presented, where two 2D probes, two integrated circuits and two spacers are microassembl...To find a design method for 3D active multichannel silicon microelectrode, a microstructure of active neural recording system is presented, where two 2D probes, two integrated circuits and two spacers are microassembled on a 5 mm×7 mm silicon platform, and 32 sites neural signals can be operated simultaneously. A theoretical model for measuring the neural signal by the silicon microelectrode is proposed based on the structure and fabrication process of a single-shank probe. The method of determining the dimensional parameters of the probe shank is discussed in the following three aspects, i.e. the structures of pallium and endocranium, coupled interconnecters noise, and strength characteristic of neural probe. The design criterion is to minimize the size of the neural probe as well as that the probe has enough stiffness to pierce the endocranium. The on-chip unity-gain bandpass amplifier has an overall gain of 42 dB over a bandwidth from 60 Hz to 10 kHz; and the DC-baseline stability circuit is of high input resistance above 30 MΩ to guarantee a cutoff frequency below 100 Hz. The circuit works in stimulating or recording modes. The conversion of the modes depends on the stimulating control signal.展开更多
In this study, we investigated the torque characteristics of large low-speed direct-drive permanent magnet synchronous generators with stator radial ventilating air ducts for offshore wind power applications. Magnet s...In this study, we investigated the torque characteristics of large low-speed direct-drive permanent magnet synchronous generators with stator radial ventilating air ducts for offshore wind power applications. Magnet shape optimization was used first to improve the torque characteristics using two-dimensional finite element analysis(FEA) in a permanent magnet synchronous generator with a common stator. The rotor step skewing technique was then employed to suppress the impacts of mechanical tolerances and defects, which further improved the torque quality of the machine. Comprehensive three-dimensional FEA was used to evaluate accurately the overall effects of stator radial ventilating air ducts and rotor step skewing on torque features. The influences of the radial ventilating ducts in the stator on torque characteristics, such as torque pulsation and average torque in the machine with and without rotor step skewing techniques, were comprehensively investigated using three-dimensional FEA. The results showed that stator radial ventilating air ducts could not only reduce the average torque but also increase the torque ripple in the machine. Furthermore, the torque ripple of the machine under certain load conditions may even be increased by rotor step skewing despite a reduction in cogging torque.展开更多
文摘The reverse magnetohydrodynamic(MHD)energy bypass technology is a promising energy redis⁃tribution technology in the scramjet system,in augmented with a power generation equipment to supply the neces⁃sary long-distance flight airframe power.In this paper,a computational model of the scramjet magnetohydrody⁃namic channel is developed and verified by using the commercial software Fluent.It is found that when the mag⁃netic induction intensity is 1,2,3,4 T,the power generation efficiency is 22.5%,22.3%,22.0%,21.5%,and decreases with the increase of the magnetic induction intensity,and the enthalpy extraction rate is 0.026%,0.1%,0.21%,0.34%,and increases with the increase of the magnetic induction intensity.The deceleration ef⁃fect of electromagnetic action on the airflow in the power channel increases with the increase of magnetic induc⁃tion intensity.The stronger the magnetic field intensity,the more obvious the decreasing effect of fluid Mach num⁃ber in the channel.The power generation efficiency decreases as the magnetic induction intensity increases and the enthalpy extraction rate is reversed.As the local currents gathering at inlet and outlet of the power generation area,total temperature and enthalpy along the flow direction do not vary linearly,and there are maximum and minimum values at inlet and outlet.Increasing the number of electrodes can effectively regulate the percentage of Joule heat dissipation,which can improve the power generation efficiency.
基金Supported by Tianjin Municipal Science and Technology Commission(No. 05YFSYSF01700).
文摘To find a design method for 3D active multichannel silicon microelectrode, a microstructure of active neural recording system is presented, where two 2D probes, two integrated circuits and two spacers are microassembled on a 5 mm×7 mm silicon platform, and 32 sites neural signals can be operated simultaneously. A theoretical model for measuring the neural signal by the silicon microelectrode is proposed based on the structure and fabrication process of a single-shank probe. The method of determining the dimensional parameters of the probe shank is discussed in the following three aspects, i.e. the structures of pallium and endocranium, coupled interconnecters noise, and strength characteristic of neural probe. The design criterion is to minimize the size of the neural probe as well as that the probe has enough stiffness to pierce the endocranium. The on-chip unity-gain bandpass amplifier has an overall gain of 42 dB over a bandwidth from 60 Hz to 10 kHz; and the DC-baseline stability circuit is of high input resistance above 30 MΩ to guarantee a cutoff frequency below 100 Hz. The circuit works in stimulating or recording modes. The conversion of the modes depends on the stimulating control signal.
基金Project supported by the National Natural Science Foundation of China(No.51377140) the National Basic Research Program(973)of China(No.2013CB035604)
文摘In this study, we investigated the torque characteristics of large low-speed direct-drive permanent magnet synchronous generators with stator radial ventilating air ducts for offshore wind power applications. Magnet shape optimization was used first to improve the torque characteristics using two-dimensional finite element analysis(FEA) in a permanent magnet synchronous generator with a common stator. The rotor step skewing technique was then employed to suppress the impacts of mechanical tolerances and defects, which further improved the torque quality of the machine. Comprehensive three-dimensional FEA was used to evaluate accurately the overall effects of stator radial ventilating air ducts and rotor step skewing on torque features. The influences of the radial ventilating ducts in the stator on torque characteristics, such as torque pulsation and average torque in the machine with and without rotor step skewing techniques, were comprehensively investigated using three-dimensional FEA. The results showed that stator radial ventilating air ducts could not only reduce the average torque but also increase the torque ripple in the machine. Furthermore, the torque ripple of the machine under certain load conditions may even be increased by rotor step skewing despite a reduction in cogging torque.