In the present investigation, electroless Ni-Cu-P/n-TiN composite coating was prepared using alkaline citrate-based bath. X-ray diffraction (XRD), scanning electron microscopy(SEM), energy-dispersive spectroscopy...In the present investigation, electroless Ni-Cu-P/n-TiN composite coating was prepared using alkaline citrate-based bath. X-ray diffraction (XRD), scanning electron microscopy(SEM), energy-dispersive spectroscopy(EDS), electrochemical measurements, weight loss tests and Raman spectrometer were used to character the properties of the coating. As the Cu content increased from 7.3 wt% to 24.8 wt%, the corrosion current density of the Ni-Cu-P/n-TiN coating decreased from 10.80 to 4.34 ~tA. And the inclusion of Cu in NiP alloy resulted in refinement and less porosity in microstructure. The addition of TiN resulted in a slight decline in anti-corrosion property of the coating. As the mass loss test showed, Ni-24.8%Cu-P exhibited perfect corrosion resistance. Studies by Raman spectroscopy on coatings proved that Cu(II)3(PO4)(OH)3, Cu(OH)2 and CuO were examined while no compound of nickel was found, and Cu exhibited preferred corrosion in saline solution, providing cathodic protection to Ni alloy.展开更多
To compensate for the limitations of previous studies,a complex network-based method is developed for determining importance measures,which combines the functional roles of the components of a mechatronic system and t...To compensate for the limitations of previous studies,a complex network-based method is developed for determining importance measures,which combines the functional roles of the components of a mechatronic system and their topological positions.First,the dependencies among the components are well-represented and well-calculated.Second,a mechatronic system is modeled as a weighted and directional functional dependency network(FDN),in which the node weights are determined by the functional roles of components in the system and their topological positions in the complex network whereas the edge weights are represented by dependency strengths.Third,given that the PageRank algorithm cannot calculate the dependency strengths among components,an improved PageRank importance measure(IPIM)algorithm is proposed,which combines the node weights and edge weights of complex networks.IPIM also considers the importance of neighboring components.Finally,a case study is conducted to investigate the accuracy of the proposed method.Results show that the method can effectively determine the importance measures of components.展开更多
PVA (Polyvinyl Alcohol) is a water soluble organic dielectric, easily solution processed to fabricate films by spin coating, dip coating or inkjet printing. It has been used as a dielectric layer in OTFTs (organic ...PVA (Polyvinyl Alcohol) is a water soluble organic dielectric, easily solution processed to fabricate films by spin coating, dip coating or inkjet printing. It has been used as a dielectric layer in OTFTs (organic thin film transistors), and its dielectric constant is around 3.5-10. For OTFTs operating at lower voltage, it is desirable to increase the dielectric constant. Here, we report a technique to incorporate upto 50 wt% of TiO2 nanoparticles (15-25 nm) in PVA to increase its dielectric constant. Rutile phase of TiO2 is used, because of its higher dielectric constant (e = 114) compared to anatase phase (E = 31). We have made inks containing 10 and 50 wt% (of PVA) TiO2 nanoparticles, which is stable upto six months. PVA-TiO2 dispersions and PVA (without TiO2) were spin coated on indium tin oxide coated polyethylene terephthalate substrate. Film structure was studied using SEM (scanning electron microscopy). Absorption study of the films confirms presence of TiO2 nanoparticles. M-I-M capacitors were fabricated by thermally evaporating aluminium on top of the dielectric films. We observed enhancement in dielectric constant by a factor of 2 for PVA containing 50 wt% TiO2 in comparison to PVA's dielectric constant. There is no concomitant increase in the leakage current.展开更多
基金Project(K1403375-11)supported by Science and Technology Planning Project of Changsha,ChinaProject(2015D009)supported by the Planned Science and Technology Project of Qingyuan City,ChinaProject(2015B04)supported by the Planned Science and Technology Project of Qingcheng District,Qingyuan City,China
文摘In the present investigation, electroless Ni-Cu-P/n-TiN composite coating was prepared using alkaline citrate-based bath. X-ray diffraction (XRD), scanning electron microscopy(SEM), energy-dispersive spectroscopy(EDS), electrochemical measurements, weight loss tests and Raman spectrometer were used to character the properties of the coating. As the Cu content increased from 7.3 wt% to 24.8 wt%, the corrosion current density of the Ni-Cu-P/n-TiN coating decreased from 10.80 to 4.34 ~tA. And the inclusion of Cu in NiP alloy resulted in refinement and less porosity in microstructure. The addition of TiN resulted in a slight decline in anti-corrosion property of the coating. As the mass loss test showed, Ni-24.8%Cu-P exhibited perfect corrosion resistance. Studies by Raman spectroscopy on coatings proved that Cu(II)3(PO4)(OH)3, Cu(OH)2 and CuO were examined while no compound of nickel was found, and Cu exhibited preferred corrosion in saline solution, providing cathodic protection to Ni alloy.
基金The National Natural Science Foundation of China(No.51875429)General Program of Shenzhen Natural Science Foundation(No.JCYJ20190809142805521)Wenzhou Major Program of Scientific and Technological Innovation(No.ZG2021021).
文摘To compensate for the limitations of previous studies,a complex network-based method is developed for determining importance measures,which combines the functional roles of the components of a mechatronic system and their topological positions.First,the dependencies among the components are well-represented and well-calculated.Second,a mechatronic system is modeled as a weighted and directional functional dependency network(FDN),in which the node weights are determined by the functional roles of components in the system and their topological positions in the complex network whereas the edge weights are represented by dependency strengths.Third,given that the PageRank algorithm cannot calculate the dependency strengths among components,an improved PageRank importance measure(IPIM)algorithm is proposed,which combines the node weights and edge weights of complex networks.IPIM also considers the importance of neighboring components.Finally,a case study is conducted to investigate the accuracy of the proposed method.Results show that the method can effectively determine the importance measures of components.
文摘PVA (Polyvinyl Alcohol) is a water soluble organic dielectric, easily solution processed to fabricate films by spin coating, dip coating or inkjet printing. It has been used as a dielectric layer in OTFTs (organic thin film transistors), and its dielectric constant is around 3.5-10. For OTFTs operating at lower voltage, it is desirable to increase the dielectric constant. Here, we report a technique to incorporate upto 50 wt% of TiO2 nanoparticles (15-25 nm) in PVA to increase its dielectric constant. Rutile phase of TiO2 is used, because of its higher dielectric constant (e = 114) compared to anatase phase (E = 31). We have made inks containing 10 and 50 wt% (of PVA) TiO2 nanoparticles, which is stable upto six months. PVA-TiO2 dispersions and PVA (without TiO2) were spin coated on indium tin oxide coated polyethylene terephthalate substrate. Film structure was studied using SEM (scanning electron microscopy). Absorption study of the films confirms presence of TiO2 nanoparticles. M-I-M capacitors were fabricated by thermally evaporating aluminium on top of the dielectric films. We observed enhancement in dielectric constant by a factor of 2 for PVA containing 50 wt% TiO2 in comparison to PVA's dielectric constant. There is no concomitant increase in the leakage current.