Finding an optimal trajectory from an initial point to a final point through closely packed obstacles, and controlling a Hilare robot through this trajectory, are challenging tasks. To serve this purpose, path planner...Finding an optimal trajectory from an initial point to a final point through closely packed obstacles, and controlling a Hilare robot through this trajectory, are challenging tasks. To serve this purpose, path planners and trajectory-tracking controllers are usually included in a control loop. This paper highlights the implementation of a trajectory-tracking controller on a stepper motor-driven Hilare robot, with a trajectory that is described as a set of waypoints. The controller was designed to handle discrete waypoints with directional discontinuity and to consider different constraints on the actuator velocity. The control parameters were tuned with the help of multi-objective particle swarm optimization to minimize the average cross-track error and average linear velocity error of the mobile robot when tracking a predefined trajectory. Experiments were conducted to control the mobile robot from a start position to a destination position along a trajectory described by the waypoints. Experimental results for tracking the trajectory generated by a path planner and the trajectory specified by a user are also demonstrated. Experiments conducted on the mobile robot validate the effectiveness of the proposed strategy for tracking different types of trajectories.展开更多
The single-shaft parallel hybrid powertrain with the automatic mechanical transmission(AMT)is an efficient hybrid driving system in the hybrid electric bus(HEB),while the electromechanical coupling driving control bec...The single-shaft parallel hybrid powertrain with the automatic mechanical transmission(AMT)is an efficient hybrid driving system in the hybrid electric bus(HEB),while the electromechanical coupling driving control becomes a complicated question to find a transient optimal control method to distribute the power between the engine and the electric machine(EM).This paper proposes an innovative control method to deal with the complicated transient coupling driving process of the electromechanical coupling driving system,considering the accelerating condition and the cruising condition mostly in the city driving cycle of HEB.The EM might be operated at driving mode or generating mode to assist the diesel engine to work in its high-efficiency area.Therefore,the adaptive torque tracking controller has been brought forward to ensure that the EM implements the demand torque as well as compensate the torque fluctuation of diesel engine.The d?q axis mathematical model and back stepping method are employed to deduce the adaptive controller and its adaptive laws.Simulation results demonstrate that the proposed control scheme can make the output torque of two power sources respond rapidly to the demand torque from the powertrain in the given driving condition.The proposed method could be adopted in the real control of HEB to improve the efficiency of the hybrid driving system.展开更多
文摘Finding an optimal trajectory from an initial point to a final point through closely packed obstacles, and controlling a Hilare robot through this trajectory, are challenging tasks. To serve this purpose, path planners and trajectory-tracking controllers are usually included in a control loop. This paper highlights the implementation of a trajectory-tracking controller on a stepper motor-driven Hilare robot, with a trajectory that is described as a set of waypoints. The controller was designed to handle discrete waypoints with directional discontinuity and to consider different constraints on the actuator velocity. The control parameters were tuned with the help of multi-objective particle swarm optimization to minimize the average cross-track error and average linear velocity error of the mobile robot when tracking a predefined trajectory. Experiments were conducted to control the mobile robot from a start position to a destination position along a trajectory described by the waypoints. Experimental results for tracking the trajectory generated by a path planner and the trajectory specified by a user are also demonstrated. Experiments conducted on the mobile robot validate the effectiveness of the proposed strategy for tracking different types of trajectories.
基金supported by the National Natural Science Foundation of China(Grant No.51275557)the National Science-technology Support Plan Projects of China(Grant No.2013BAG14B01)
文摘The single-shaft parallel hybrid powertrain with the automatic mechanical transmission(AMT)is an efficient hybrid driving system in the hybrid electric bus(HEB),while the electromechanical coupling driving control becomes a complicated question to find a transient optimal control method to distribute the power between the engine and the electric machine(EM).This paper proposes an innovative control method to deal with the complicated transient coupling driving process of the electromechanical coupling driving system,considering the accelerating condition and the cruising condition mostly in the city driving cycle of HEB.The EM might be operated at driving mode or generating mode to assist the diesel engine to work in its high-efficiency area.Therefore,the adaptive torque tracking controller has been brought forward to ensure that the EM implements the demand torque as well as compensate the torque fluctuation of diesel engine.The d?q axis mathematical model and back stepping method are employed to deduce the adaptive controller and its adaptive laws.Simulation results demonstrate that the proposed control scheme can make the output torque of two power sources respond rapidly to the demand torque from the powertrain in the given driving condition.The proposed method could be adopted in the real control of HEB to improve the efficiency of the hybrid driving system.