Nanowires (NWs) are ideal nanostructures for exploring the effects of low dimensionality and thermal conductivity suppression on thermoelectric behavior. However, it is challenging to accurately measure temperature ...Nanowires (NWs) are ideal nanostructures for exploring the effects of low dimensionality and thermal conductivity suppression on thermoelectric behavior. However, it is challenging to accurately measure temperature gradients and heat flow in such systems. Here, using a combination of spatially resolved Raman spectroscopy and transport measurements, we determine all the thermoelectric properties of single Se-doped InSb NWs and quantify the figure of merit ZT. The measured laser-induced heating in the NWs and associated electrical response are well described by a 1D heat equation model. Our method allows the determination of the thermal contact resistances at the source and drain electrodes of the NW, which are negligible in our system. The measured thermoelectric parameters of InSb NWs agree well with those obtained based on field-effect transistor Seebeck measurements.展开更多
In this paper, bridge alignment control with considering dynamic train loads was experimentally and theoretically investigated.Analytical process of bridge dynamics and the self-adaptive Kalman filter bridge alignment...In this paper, bridge alignment control with considering dynamic train loads was experimentally and theoretically investigated.Analytical process of bridge dynamics and the self-adaptive Kalman filter bridge alignment control method with considering the dynamic train loads were briefly introduced. The static measurement, the dynamic test, the field alignment measurement as well as the finite element analysis(FEA) of the second longest rail transit cable-stayed bridge in the world were carried out.Based on the results, the train dynamic load effect on the bridge alignment was obtained quantitatively. Subsequently, alignment control of the rail transit bridge with considering this effect using a self-adaptive Kalman filter method was analyzed. The results show that:(a) the dynamic train loads have effects on alignment control of the bridge and therefore cannot be neglected;(b) the self-adaptive Kalman filter method is applicable and reliable for alignment control of bridges during construction. The analytical method and whole process contribute to develop a related specification and further engineering applications.展开更多
文摘Nanowires (NWs) are ideal nanostructures for exploring the effects of low dimensionality and thermal conductivity suppression on thermoelectric behavior. However, it is challenging to accurately measure temperature gradients and heat flow in such systems. Here, using a combination of spatially resolved Raman spectroscopy and transport measurements, we determine all the thermoelectric properties of single Se-doped InSb NWs and quantify the figure of merit ZT. The measured laser-induced heating in the NWs and associated electrical response are well described by a 1D heat equation model. Our method allows the determination of the thermal contact resistances at the source and drain electrodes of the NW, which are negligible in our system. The measured thermoelectric parameters of InSb NWs agree well with those obtained based on field-effect transistor Seebeck measurements.
基金supported by the State Key Laboratory Breeding Base of Mountain Bridge and Tunnel Engineering(Chongqing Jiaotong University)fund(Grant No.CQSLBF-Y16-16)the Engineering Research Center of Bridge Structure and Material in the Mountainous Area Fund(Grant No.QLGCZX-JJ2015-6)+4 种基金the National Natural Science Foundation of China(Grant No.51408087)the Construction Technology Project of Ministry of Transport(Grant No.2015318814190)the Key Project of Foundation and Frontier Research of Chongqing(Grant No.cstc2015jcyjBX0022)the Application Foundation Research Project of Ministry of transport(Grant No.2013319814180)the "Xiaoping Science and Technology Innovation Team" fund for Chinese college students
文摘In this paper, bridge alignment control with considering dynamic train loads was experimentally and theoretically investigated.Analytical process of bridge dynamics and the self-adaptive Kalman filter bridge alignment control method with considering the dynamic train loads were briefly introduced. The static measurement, the dynamic test, the field alignment measurement as well as the finite element analysis(FEA) of the second longest rail transit cable-stayed bridge in the world were carried out.Based on the results, the train dynamic load effect on the bridge alignment was obtained quantitatively. Subsequently, alignment control of the rail transit bridge with considering this effect using a self-adaptive Kalman filter method was analyzed. The results show that:(a) the dynamic train loads have effects on alignment control of the bridge and therefore cannot be neglected;(b) the self-adaptive Kalman filter method is applicable and reliable for alignment control of bridges during construction. The analytical method and whole process contribute to develop a related specification and further engineering applications.