期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
质子交换膜燃料电池电极催化材料发展概况 被引量:6
1
作者 崔梅生 郭耘 +1 位作者 黄小卫 张炜 《稀有金属》 EI CAS CSCD 北大核心 2002年第6期487-492,共6页
质子交换膜燃料电池 (PEMFC)具有低温快速启动、比能量高、无噪音、无污染等诸多优点 ,在潜艇、航天、洁净电站、移动电源及电动汽车等各个领域具有广阔的应用前景 ,引起人们巨大关注。对PEMFC电极催化材料的发展现状作了简要概述 ,并... 质子交换膜燃料电池 (PEMFC)具有低温快速启动、比能量高、无噪音、无污染等诸多优点 ,在潜艇、航天、洁净电站、移动电源及电动汽车等各个领域具有广阔的应用前景 ,引起人们巨大关注。对PEMFC电极催化材料的发展现状作了简要概述 ,并指出为达到商业化目的 ,PEMFC关键材料、关键技术尚需作出较大突破。对于电极催化材料 ,应努力提高铂金属利用率 ,降低铂担载量 ,降低制造成本 ;应努力增强催化剂抗中毒能力 。 展开更多
关键词 质子交换膜燃料电池 发展概况 电极催化材料 铂合金
下载PDF
NiMoN催化电极材料的制备及其电解海水制氢性能 被引量:2
2
作者 刘梦珊 孟超 +1 位作者 胡涵 吴明铂 《石油化工高等学校学报》 CAS 2023年第2期1-9,共9页
以四水合钼酸铵为钼源、六水合硝酸镍为镍源,采用水热法在泡沫镍基底上制备前驱体NiMoO4纳米棒阵列,然后通过热氮化法得到具有棒状阵列结构的NiMoN催化电极材料(简称NiMoN)。采用X射线衍射和扫描电子显微镜对NiMoN的物相结构和表面形貌... 以四水合钼酸铵为钼源、六水合硝酸镍为镍源,采用水热法在泡沫镍基底上制备前驱体NiMoO4纳米棒阵列,然后通过热氮化法得到具有棒状阵列结构的NiMoN催化电极材料(简称NiMoN)。采用X射线衍射和扫描电子显微镜对NiMoN的物相结构和表面形貌进行表征;通过线性扫描伏安法、塔菲尔斜率、电化学阻抗谱等电化学测试手段,对NiMoN的半反应析氧(OER)、析氢(HER)以及全解水性能进行测试。结果表明,在碱性淡水和碱性模拟海水电解液中,NiMoN均显示了突出的OER活性,产生100.00 mA/cm^(2)的电流密度分别需要293、340 mV的过电位;NiMoN‐9具有较好的HER活性,在两种电解液中产生100.00 mA/cm^(2)的电流密度分别需要361、400 mV的过电位;NiMoN‐9具有良好的全解水性能,在两种电解液中产生100.00 mA/cm^(2)的电流密度所需电压分别为2.016、2.032 V,且可稳定运行55 h以上。 展开更多
关键词 镍钼氮化物 催化电极材料 电解海水 析氢反应 析氧反应
下载PDF
离子束溅射制备Pt/C催化电极材料的结构和电化学性能 被引量:7
3
作者 杨滨 许思勇 +2 位作者 张永俐 赵永丰 余英 《贵金属》 CAS CSCD 北大核心 1999年第1期14-19,共6页
采用离子束溅射技术制备Pt/C催化电极(Pt层厚度为100nm),降低了电极耗铂量至019mg/cm2,电极具有良好的电化学性能。研究了在不同碳质载体材料上用不同沉积条件制备的Pt/C电极的电化学性能。结果表明石墨... 采用离子束溅射技术制备Pt/C催化电极(Pt层厚度为100nm),降低了电极耗铂量至019mg/cm2,电极具有良好的电化学性能。研究了在不同碳质载体材料上用不同沉积条件制备的Pt/C电极的电化学性能。结果表明石墨纤维布上沉积铂的电极性能优于碳纸上沉积铂的电极;采用高束电压高束电流情况下沉积的铂电极电化学性能又有显著提高。电极连续运转1000h后催化活性未出现下降。 展开更多
关键词 离子束溅射 燃料电池 催化电极材料 电化学性能
下载PDF
Microbial Electrolysis Cells for Hydrogen Production 被引量:2
4
作者 Li-juan Xiang Ling Dai +3 位作者 Ke-xin Guo Zhen-hai Wen Su-qin Ci Jing-hong Li 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2020年第3期263-284,I0002,共23页
Microbial electrolysis cells(MECs)present an attractive route for energy-saving hydrogen(H2)production along with treatment of various wastewaters,which can convert organic matter into H2 with the assistance of microb... Microbial electrolysis cells(MECs)present an attractive route for energy-saving hydrogen(H2)production along with treatment of various wastewaters,which can convert organic matter into H2 with the assistance of microbial electrocatalysis.However,the development of such renewable technologies for H2 production still faces considerable challenges regarding how to enhance the H2 production rate and to lower the energy and the system cost.In this review,we will focus on the recent research progress of MEC for H2 production.First,we present a brief introduction of MEC technology and the operating mechanism for H2 production.Then,the electrode materials including some typical electrocatalysts for hydrogen production are summarized and discussed.We also highlight how various substrates used in MEC affect the associated performance of hydrogen generation.Finally we presents several key scientific challenges and our perspectives on how to enhance the electrochemical performance. 展开更多
关键词 Microbial electrolysis cells H2 production ELECTROCATALYSIS Wastewater treatment Electrode materials
下载PDF
Photoelectrode for water splitting: Materials,fabrication and characterization 被引量:6
5
作者 Zhiliang Wang Lianzhou Wang 《Science China Materials》 SCIE EI CSCD 2018年第6期806-821,共16页
Photoelectorchemical(PEC) water splitting is an attractive approach for producing sustainable and environment-friendly hydrogen. An efficient PEC process is rooted in appropriate semiconductor materials, which shoul... Photoelectorchemical(PEC) water splitting is an attractive approach for producing sustainable and environment-friendly hydrogen. An efficient PEC process is rooted in appropriate semiconductor materials, which should possess small bandgap to ensure wide light harvest, facile charge separation to allow the generated photocharges migrating to the reactive sites and highly catalytic capability to fully utilize the separated photocharges. Proper electrode fabrication method is of equal importance for promoting charge transfer and accelerating surface reactions in the electrodes. Moreover,powerful characterization method can shed light on the complex PEC process and provide deep understanding of the rate-determining step for us to improve the PEC systems further. Targeting on high solar conversion efficiency, here we provide a review on the development of PEC water splitting in the aspect of materials exploring, fabrication method and characterization. It is expected to provide some fundamental insight of PEC and inspire the design of more effective PEC systems. 展开更多
关键词 PHOTOELECTRODE water splitting semiconductor material electrode fabrication CHARACTERIZATION
原文传递
A highly-efficient oxygen evolution electrode based on defective nickel-iron layered double hydroxide 被引量:9
6
作者 Xuya Xiong Zhao Cai +10 位作者 Daojin Zhou Guoxin Zhang Qian Zhang Yin Jia Xinxuan Duan Qixian Xie Shibin Lai Tianhui Xie Yaping Li Xiaoming Sun Xue Duan 《Science China Materials》 SCIE EI CSCD 2018年第7期939-947,共9页
Exploring efficient and cost-effective electro- catalysts for oxygen evolution reaction (OER) is critical to water splitting. While nickel-iron layered double hydroxide (NiFe LDH) has been long recognized as a pro... Exploring efficient and cost-effective electro- catalysts for oxygen evolution reaction (OER) is critical to water splitting. While nickel-iron layered double hydroxide (NiFe LDH) has been long recognized as a promising non- precious electrocatalyst for OER, its intrinsic activity needs further improvement. Herein, we design a highly-efficient oxygen evolution electrode based on defective NiFe LDH na- noarray. By combing the merits of the modulated electronic structure, more exposed active sites, and the conductive elec- trode, the defective NiFe LDH electrocatalysts show a low onset potential of 1.40 V (vs. RHE). An overpotential of only 200 mV is required for 10 mA cm-2, which is 48 mV lower than that of pristine NiFe-LDH. Density functional theory plus U (DFT+U) calculations are further employed for the origin of this OER activity enhancement. We find the introduction of oxygen vacancies leads to a lower valance state of Fe and the narrowed bandgap, which means the electrons tend to be ea- sily excited into the conduction band, resulting in the lowered reaction overpotential and enhanced OER performance. 展开更多
关键词 oxygen evolution reaction layered double hydroxide oxygen vacancy ELECTROCATALYSIS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部