The effect of transition metal ions(M^(2+)=Mn^(2+),Ni^(2+),Co^(2+),Cu^(2+)) on the chemical synthesis of polyaniline(PANI) used as a platinum-free counter electrode(CE) in dye-sensitized solar cells(DSSCs) was investi...The effect of transition metal ions(M^(2+)=Mn^(2+),Ni^(2+),Co^(2+),Cu^(2+)) on the chemical synthesis of polyaniline(PANI) used as a platinum-free counter electrode(CE) in dye-sensitized solar cells(DSSCs) was investigated.PANI was synthesized by co-polymerization of aniline in the presence of different transition metal ions by using potassium dichromate in acidic medium. It was found that the ion doping of PANI showed a certain catalytic activity for the regeneration of traditional iodide/triiodide(I^-/I_3^-) redox couples. The power conversion efficiency(η) of PANI CEs doped with Mn^(2+),Ni^(2+),Co^(2+) (4.41%, 2.36% and 2.10%, respectively) were higher than 1.94%, the value measured for PANI CE without doping. Doping with Cu^(2+)decreased the power conversion efficiency of PANI CE(PANI-Cu^(2+) η = 1.41%). The electrical properties of the PANI, PANI-Ni^(2+), PANI-Co^(2+),PANI-Mn^(2+) and PANI-Cu^(2+) were studied by cyclic voltammetry(CV), impedance(EIS), and Tafel polarization curve. The experimental results confirmed that PANI was affected by the doping of different transition metal ions(M^(2+)=Mn^(2+),Ni^(2+),Co^(2+),Cu^(2+)). These results indicate a potential application of ion doped PANI as counter electrode in cost-effective DSSCs.展开更多
In this work,we initially synthesized Sb2S3 with uniform flower-like structures via a facile hydrothermal method through the modification of the Sb source and pH value.Afterward,Sb2S3 with a nanosheet structure was su...In this work,we initially synthesized Sb2S3 with uniform flower-like structures via a facile hydrothermal method through the modification of the Sb source and pH value.Afterward,Sb2S3 with a nanosheet structure was successfully synthesized on reduced graphene oxide(Sb2S3@RGO).The flower-like Sb2S3 and the Sb2S3@RGO nanosheets were tested as the counter electrode(CE)of dye-sensitized solar cells,and the latter exhibited a higher electrocatalytic property than the former owing to the introduction of graphene.The results from electrochemical tests indicated that the as-prepared Sb2S3@RGO nanosheets possess higher catalytic activity,charge-transfer ability,and electrochemical stability than Sb2S3,RGO,and Pt CEs.More notably,the power conversion efficiency of Sb2S3@RGO reached 8.17%,which was higher than that of the standard Pt CE(7.75%).展开更多
基金Supported by the National Natural Science Foundation of China(21473048,21303039)the Natural Science Foundation of Hebei Province(B2016205161,B2015205163)the 2015 Hebei Province Undergraduate Training Programs for Innovation and Entrepreneurship
文摘The effect of transition metal ions(M^(2+)=Mn^(2+),Ni^(2+),Co^(2+),Cu^(2+)) on the chemical synthesis of polyaniline(PANI) used as a platinum-free counter electrode(CE) in dye-sensitized solar cells(DSSCs) was investigated.PANI was synthesized by co-polymerization of aniline in the presence of different transition metal ions by using potassium dichromate in acidic medium. It was found that the ion doping of PANI showed a certain catalytic activity for the regeneration of traditional iodide/triiodide(I^-/I_3^-) redox couples. The power conversion efficiency(η) of PANI CEs doped with Mn^(2+),Ni^(2+),Co^(2+) (4.41%, 2.36% and 2.10%, respectively) were higher than 1.94%, the value measured for PANI CE without doping. Doping with Cu^(2+)decreased the power conversion efficiency of PANI CE(PANI-Cu^(2+) η = 1.41%). The electrical properties of the PANI, PANI-Ni^(2+), PANI-Co^(2+),PANI-Mn^(2+) and PANI-Cu^(2+) were studied by cyclic voltammetry(CV), impedance(EIS), and Tafel polarization curve. The experimental results confirmed that PANI was affected by the doping of different transition metal ions(M^(2+)=Mn^(2+),Ni^(2+),Co^(2+),Cu^(2+)). These results indicate a potential application of ion doped PANI as counter electrode in cost-effective DSSCs.
基金funded by the Tianjin science and technology support key projects(18YFZCSF00500)the National Science Fund for Distinguished Young Scholars(21425729)the National Natural Science Foundation of China
文摘In this work,we initially synthesized Sb2S3 with uniform flower-like structures via a facile hydrothermal method through the modification of the Sb source and pH value.Afterward,Sb2S3 with a nanosheet structure was successfully synthesized on reduced graphene oxide(Sb2S3@RGO).The flower-like Sb2S3 and the Sb2S3@RGO nanosheets were tested as the counter electrode(CE)of dye-sensitized solar cells,and the latter exhibited a higher electrocatalytic property than the former owing to the introduction of graphene.The results from electrochemical tests indicated that the as-prepared Sb2S3@RGO nanosheets possess higher catalytic activity,charge-transfer ability,and electrochemical stability than Sb2S3,RGO,and Pt CEs.More notably,the power conversion efficiency of Sb2S3@RGO reached 8.17%,which was higher than that of the standard Pt CE(7.75%).