The reflecting and transmitting effects of a planar unidirectionally conducting screen are analyzed based on the accurate closed-form expression for electric field of an arbitrarily oriented electric dipole.For a dipo...The reflecting and transmitting effects of a planar unidirectionally conducting screen are analyzed based on the accurate closed-form expression for electric field of an arbitrarily oriented electric dipole.For a dipole oriented along the wire elements of the screen,the screen acts as a perfectly electrically conducting plane.For a dipole perpendicular to the wire elements,the fields reflected by the screen can be interpreted as the contribution of an image dipole and image transmission-line current source,while the transmitted field is arisen from image transmission-line source.The expressions of related surface waves are derived and can be compared with previous results.展开更多
Under the inflammable or explosive environment, the direct measurement methods by opening up the explo- sion-proof shell of electrical installations were not adopted. So, it's impossible to have a quantitative analys...Under the inflammable or explosive environment, the direct measurement methods by opening up the explo- sion-proof shell of electrical installations were not adopted. So, it's impossible to have a quantitative analysis on the limit of conducted disturbance for electrical fast transient burst (EFT/B) in such dangerous environments. Transient conducted coupling model, which using EFT/B as its excitation source, can be built based on circuit and electromagnetic field theory. Furthermore, numerical analysis was performed. The results indicate that the capacitive coupling voltage is the same polarity as EFT/B, and is the main disturbance form of conducted coupling in mines. The inductive coupling voltage is reversed polarity with the ca- pacitive coupling voltage, and both peaks appear only in the rising time of EFT/B, which increase with the rising of load resistance. Moreover, the cable coupling voltage on the side of disturbance source is higher than the one on the other side in tunnel. To reduce the common resistance can suppress the resistive coupling disturbance.展开更多
We study the magnetic field effects on the spin-polarized transport of the quantum dot (QD) spin valve in the sequential tunneling regime. A set of generalized master equation is derived. Based on that, we discuss t...We study the magnetic field effects on the spin-polarized transport of the quantum dot (QD) spin valve in the sequential tunneling regime. A set of generalized master equation is derived. Based on that, we discuss the collinear and noncollinear magnetic field effects, respectively. In the collinear magnetic field case, we find that the Zeeman splitting can induce a negative differential conductance (NDC), which is quite different from the one found in previous studies. It has a critical polarization in the parallel arrangement and will disappear in the antiparallel configuration. In the noncollinear magnetic field case, the current shows two plateaus and their angular dependence is analyzed. Although sometimes the two current plateaus have similar angular dependence, their mechanisms are different. Our formalism is also suitable for calculating the transport in magnetic molecules, in which the spin splitting is induced not by a magnetic field but by the intrinsic magnetization.展开更多
文摘The reflecting and transmitting effects of a planar unidirectionally conducting screen are analyzed based on the accurate closed-form expression for electric field of an arbitrarily oriented electric dipole.For a dipole oriented along the wire elements of the screen,the screen acts as a perfectly electrically conducting plane.For a dipole perpendicular to the wire elements,the fields reflected by the screen can be interpreted as the contribution of an image dipole and image transmission-line current source,while the transmitted field is arisen from image transmission-line source.The expressions of related surface waves are derived and can be compared with previous results.
基金Supported by the National Natural Science Foundation of China (50674093) the Project of Fujian Provincial Education Department (JA11098)
文摘Under the inflammable or explosive environment, the direct measurement methods by opening up the explo- sion-proof shell of electrical installations were not adopted. So, it's impossible to have a quantitative analysis on the limit of conducted disturbance for electrical fast transient burst (EFT/B) in such dangerous environments. Transient conducted coupling model, which using EFT/B as its excitation source, can be built based on circuit and electromagnetic field theory. Furthermore, numerical analysis was performed. The results indicate that the capacitive coupling voltage is the same polarity as EFT/B, and is the main disturbance form of conducted coupling in mines. The inductive coupling voltage is reversed polarity with the ca- pacitive coupling voltage, and both peaks appear only in the rising time of EFT/B, which increase with the rising of load resistance. Moreover, the cable coupling voltage on the side of disturbance source is higher than the one on the other side in tunnel. To reduce the common resistance can suppress the resistive coupling disturbance.
基金supported by the Chinese Academy of Sciences,US-DOE under Grant No.DE-FG02-04ER46124,US-Natural Science FoundationNational Natural Science Foundation of China under Grant Nos.10525418,10734110,and 60776060
文摘We study the magnetic field effects on the spin-polarized transport of the quantum dot (QD) spin valve in the sequential tunneling regime. A set of generalized master equation is derived. Based on that, we discuss the collinear and noncollinear magnetic field effects, respectively. In the collinear magnetic field case, we find that the Zeeman splitting can induce a negative differential conductance (NDC), which is quite different from the one found in previous studies. It has a critical polarization in the parallel arrangement and will disappear in the antiparallel configuration. In the noncollinear magnetic field case, the current shows two plateaus and their angular dependence is analyzed. Although sometimes the two current plateaus have similar angular dependence, their mechanisms are different. Our formalism is also suitable for calculating the transport in magnetic molecules, in which the spin splitting is induced not by a magnetic field but by the intrinsic magnetization.