Metal organic frameworks(MOFs) are considered as very promising candidates to build electrodes for electrochemical energy storage devices such as lithium ion batteries, fuel cells and supercapacitors, due to their d...Metal organic frameworks(MOFs) are considered as very promising candidates to build electrodes for electrochemical energy storage devices such as lithium ion batteries, fuel cells and supercapacitors, due to their diverse structure, adjustable aperture, large specific surface area and abundant active sites. Supercapacitor has been widely investigated in the past decades. Of critical importance in these devices is the electrode active materials, and this application has been intensively studied with the development of novel nanomaterials. In this review we summarize recent reports on MO Fs as electrode materials for super capacitors. Specifically,the synthesis of MOF materials for super capacitor electrodes and their performance in electrochemical energy storage are discussed. We aim to include supercapacitor electrode materials related to MOFs, such as carbon, metal and composite materials. It is proposed that MOFs play an important role in the development of a new generation of supercapacitor electrode materials. Finally, we discuss the current challenges in the field of supercapacitors, with a view towards how to address these challenges with the future development of MOFs and their derivatives.展开更多
Flexible energy storage devices are becoming indispensable new elements of wearable electronics to improve our living qualities.As the main energy storage devices,lithium-ion batteries(LIBs)are gradually approaching t...Flexible energy storage devices are becoming indispensable new elements of wearable electronics to improve our living qualities.As the main energy storage devices,lithium-ion batteries(LIBs)are gradually approaching their theoretical limit in terms of energy density.In recent years,lithium metal batteries(LMBs)with metallic Li as the anode are revived due to the extremely high energy density,and are considered to be one of the ideal alternatives for the next generation of flexible power supply.In this review,key technologies and scientific problems to be overcome for flexible LMBs are discussed.Then,the recent advances in flexible LMBs,including the design of flexible Li metal anodes,electrolytes,cathodes and interlayers,are summarized.In addition,we have summed up the research progress of flexible device configurations,and emphasized the importance of flexibility evaluation and functionality integration to ensure the wearing safety in complex environment.Finally,the challenges and future development of flexible LMBs are summarized and prospected.展开更多
Lithium-sulfur batteries have been widely nominated as one of the most promising next-generation electrochemical storage systems due to its low cost, high capacity and energy density. However, its practical applicatio...Lithium-sulfur batteries have been widely nominated as one of the most promising next-generation electrochemical storage systems due to its low cost, high capacity and energy density. However, its practical application is still hindered by poor cycling lifetime, low Coulombic efficiency, instability and small scales. In the last decade, the electrochemical performances of the lithium-sulfur batteries have been improved by developing various novel nanoarchitectures as qualified hosts, and enhancing the sulfur loading with effective encapsulating strategies. The review summarizes the major sulfur cooperating strategies of cathodes based on background and latest progress of the lithium-sulfur batteries. The novel cooperating strategies of physical techniques and chemical synthesis techniques are discussed in detail. Based on the rich chemistry of sulfur, we paid more attention to the highlights of sulfur encapsulating strategies. Furthermore, the critical research directions in the coming future are proposed in the conclusion and outlook section.展开更多
As one of new electrical energy storage systems, supercapacitors possess higher energy density than conventional capacitors and larger power density than batteries, integrating substantial merits with high energy, lar...As one of new electrical energy storage systems, supercapacitors possess higher energy density than conventional capacitors and larger power density than batteries, integrating substantial merits with high energy, large power delivery, long cycle life, obvious safety, and low cost. However, the unsatisfying energy density is the inhabiting issue for the wide commercial applications. As the energy density(E, W h kg?1) is directly proportional to specific capacitance(C, F g?1) and the square of operating voltage(V, V), in this review, we summarize the recent progress in two sections: the exploration of high-performance electrode materials to achieve high specific capacitance and the construction of high-voltage supercapacitor systems for high working voltage. The progressive explorations and developments in supercapacitors could guide the future research towards high-performance, low-cost, and safe energy storage devices.展开更多
The catalytic effect of electrode materials is one of the most crucial factors for achieving efficient electrochemical energy conversion and storage.Carbon-based metal composites were widely synthesized and employed a...The catalytic effect of electrode materials is one of the most crucial factors for achieving efficient electrochemical energy conversion and storage.Carbon-based metal composites were widely synthesized and employed as electrode materials because of their inherited outstanding properties.Usually,electrode materials can provide a higher capacity than the anticipated values,even beyond the theoretical limit.The origin of the extra capacity has not yet been explained accurately,and its formation mechanism is still ambiguous.Herein,we first summarized the current research progress and drawbacks in energy storage devices(ESDs),and elaborated the role of catalytic effect in enhancing the performance of ESDs as follows:promoting the evolution of the solid electrolyte interphase(SEI),accelerating the reversible conversion of discharge/charge products,and improving the conversion speed of the intermediate and the utilization rate of the active materials,thereby avoiding the shuttling effect.Additionally,a particular focus was placed on the interaction between the catalytic effect and energy storage performance in order to highlight the efficacy and role of the catalytic effect.We hope that this review could provide innovative ideas for designing the electrode materials with an efficient catalytic effect for ESDs to promote the development of this research field.展开更多
The rational design and synthesis of hybrid-type electrode nanomaterials are significant for their diverse applications,including their potential usage as high-efficiency nanoarchitectures for supercapacitors(SCs)as a...The rational design and synthesis of hybrid-type electrode nanomaterials are significant for their diverse applications,including their potential usage as high-efficiency nanoarchitectures for supercapacitors(SCs)as a class of promising energy-storage systems for powering next-generation electric vehicles and electronic devices.Here,we reported a facile and controllable synthesis of core-shell Ni_(3)S_(2)@NiWO_(4)nanoarrays to fabricate a freestanding electrode for hybrid SCs.Impressively,the as-prepared freestanding Ni_(3)S_(2)@NiWO_(4)electrode presents an ultrahigh areal capacity of 2032μA h cm^(-2)at 5 mA cm^(-2),and a capacity retention of 63.6%even when the current density increased up to 50 mA cm^(-2).Remarkably,the Ni_(3)S_(2)@NiWO_(4)nanoarraybased hybrid SC delivers a maximum energy density of 1.283 mW h cm^(-2)at 3.128 mW cm^(-2)and a maximum power density of 41.105 mW cm^(-2)at 0.753 mW h cm^(-2).Furthermore,the hybrid SC exhibits a capacity retention of 89.6%even after continuous 10,000 cycles,proving its superior stability.This study provides a facile pathway to rationally design a variety of core-shell metal nanostructures for high-performance energy storage devices.展开更多
Aluminum-ion batteries(AIBs)are a type of promising energy storage device due to their high capacity,high charge transfer efficiency,low cost,and high safety.However,the most investigated graphitic and metal dichalcog...Aluminum-ion batteries(AIBs)are a type of promising energy storage device due to their high capacity,high charge transfer efficiency,low cost,and high safety.However,the most investigated graphitic and metal dichalcogenide cathodes normally possess only a moderate capacity and a relatively low cycling stability,respectively,which limit the further development of high-performance AIBs.Here,based on the results of first principles calculations,we developed a polyaniline/graphene oxide composite that exhibited outstanding performances as a cathode material in AIBs(delivering 180 mA h g^−1 after 4000 cycles),considering both the discharge capacity and the cycling performance.Ex-situ characterizations verified that the charge storage mechanism of polyaniline depended on the moderate interactions between−NH in the polyaniline chain and the electrolyte anions,such as AlCl4^−.These findings lay the foundation of the development of high-performance AIBs based on conducting polymers.展开更多
基金supported by the Fundamental Research Funds for Central Universities' through Beihang Universitythe Queensland Government through the Q-CAS Collaborative Science Fund 2016 "Graphene-Based Thin Film Supercapacitors"
文摘Metal organic frameworks(MOFs) are considered as very promising candidates to build electrodes for electrochemical energy storage devices such as lithium ion batteries, fuel cells and supercapacitors, due to their diverse structure, adjustable aperture, large specific surface area and abundant active sites. Supercapacitor has been widely investigated in the past decades. Of critical importance in these devices is the electrode active materials, and this application has been intensively studied with the development of novel nanomaterials. In this review we summarize recent reports on MO Fs as electrode materials for super capacitors. Specifically,the synthesis of MOF materials for super capacitor electrodes and their performance in electrochemical energy storage are discussed. We aim to include supercapacitor electrode materials related to MOFs, such as carbon, metal and composite materials. It is proposed that MOFs play an important role in the development of a new generation of supercapacitor electrode materials. Finally, we discuss the current challenges in the field of supercapacitors, with a view towards how to address these challenges with the future development of MOFs and their derivatives.
基金financially supported by the National Natural Science Foundation of China(U1804138,U1904195,and 22104079)the Program for Science&Technology Innovative Research Team(20IRTSTHN007)+2 种基金the Innovation Talents(22HASTIT028)Key Scientific Research(22A150052)in the Universities of Henan Provincethe Key Science and Technology Research of Henan Province(212102210654)。
文摘Flexible energy storage devices are becoming indispensable new elements of wearable electronics to improve our living qualities.As the main energy storage devices,lithium-ion batteries(LIBs)are gradually approaching their theoretical limit in terms of energy density.In recent years,lithium metal batteries(LMBs)with metallic Li as the anode are revived due to the extremely high energy density,and are considered to be one of the ideal alternatives for the next generation of flexible power supply.In this review,key technologies and scientific problems to be overcome for flexible LMBs are discussed.Then,the recent advances in flexible LMBs,including the design of flexible Li metal anodes,electrolytes,cathodes and interlayers,are summarized.In addition,we have summed up the research progress of flexible device configurations,and emphasized the importance of flexibility evaluation and functionality integration to ensure the wearing safety in complex environment.Finally,the challenges and future development of flexible LMBs are summarized and prospected.
基金supported by the National Natural Science Foundation of China(Grant No.21303038)Open Funds of the State Key Laboratory of Rare Earth Resource Utilization(Grant No.RERU2016004)+1 种基金Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry(Grant No.JZ2015JYLH0082)Qingdao Think-Tank Union Funds for Energy Storage(Grant No.JZ2016QTXM1097)
文摘Lithium-sulfur batteries have been widely nominated as one of the most promising next-generation electrochemical storage systems due to its low cost, high capacity and energy density. However, its practical application is still hindered by poor cycling lifetime, low Coulombic efficiency, instability and small scales. In the last decade, the electrochemical performances of the lithium-sulfur batteries have been improved by developing various novel nanoarchitectures as qualified hosts, and enhancing the sulfur loading with effective encapsulating strategies. The review summarizes the major sulfur cooperating strategies of cathodes based on background and latest progress of the lithium-sulfur batteries. The novel cooperating strategies of physical techniques and chemical synthesis techniques are discussed in detail. Based on the rich chemistry of sulfur, we paid more attention to the highlights of sulfur encapsulating strategies. Furthermore, the critical research directions in the coming future are proposed in the conclusion and outlook section.
基金supported by the National Natural Science Foundation of China(Grant Nos.51572129&U1407106)Natural Science Foundation of Jiangsu Province(Grant No.BK20131349)+1 种基金A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Fundamental Research Funds for the Central Universities(Grant No.30915011204)
文摘As one of new electrical energy storage systems, supercapacitors possess higher energy density than conventional capacitors and larger power density than batteries, integrating substantial merits with high energy, large power delivery, long cycle life, obvious safety, and low cost. However, the unsatisfying energy density is the inhabiting issue for the wide commercial applications. As the energy density(E, W h kg?1) is directly proportional to specific capacitance(C, F g?1) and the square of operating voltage(V, V), in this review, we summarize the recent progress in two sections: the exploration of high-performance electrode materials to achieve high specific capacitance and the construction of high-voltage supercapacitor systems for high working voltage. The progressive explorations and developments in supercapacitors could guide the future research towards high-performance, low-cost, and safe energy storage devices.
基金the National Natural Science Foundation of China(21875221,21890753,22162026,22225204,and U1967215)the National Key Research and Development Program of China(2016YFB0101202)+2 种基金the Youth Talent Support Program of High-Level Talents Special Support Plan in Henan Province(ZYQR201810148)Qiushi Scientific Research Initiation Plan of Zhengzhou University(32213243)the Distinguished Young Scholars Innovation Team of Zhengzhou University(32320275).
文摘The catalytic effect of electrode materials is one of the most crucial factors for achieving efficient electrochemical energy conversion and storage.Carbon-based metal composites were widely synthesized and employed as electrode materials because of their inherited outstanding properties.Usually,electrode materials can provide a higher capacity than the anticipated values,even beyond the theoretical limit.The origin of the extra capacity has not yet been explained accurately,and its formation mechanism is still ambiguous.Herein,we first summarized the current research progress and drawbacks in energy storage devices(ESDs),and elaborated the role of catalytic effect in enhancing the performance of ESDs as follows:promoting the evolution of the solid electrolyte interphase(SEI),accelerating the reversible conversion of discharge/charge products,and improving the conversion speed of the intermediate and the utilization rate of the active materials,thereby avoiding the shuttling effect.Additionally,a particular focus was placed on the interaction between the catalytic effect and energy storage performance in order to highlight the efficacy and role of the catalytic effect.We hope that this review could provide innovative ideas for designing the electrode materials with an efficient catalytic effect for ESDs to promote the development of this research field.
基金the National Natural Science Foundation of China(91963113)。
文摘The rational design and synthesis of hybrid-type electrode nanomaterials are significant for their diverse applications,including their potential usage as high-efficiency nanoarchitectures for supercapacitors(SCs)as a class of promising energy-storage systems for powering next-generation electric vehicles and electronic devices.Here,we reported a facile and controllable synthesis of core-shell Ni_(3)S_(2)@NiWO_(4)nanoarrays to fabricate a freestanding electrode for hybrid SCs.Impressively,the as-prepared freestanding Ni_(3)S_(2)@NiWO_(4)electrode presents an ultrahigh areal capacity of 2032μA h cm^(-2)at 5 mA cm^(-2),and a capacity retention of 63.6%even when the current density increased up to 50 mA cm^(-2).Remarkably,the Ni_(3)S_(2)@NiWO_(4)nanoarraybased hybrid SC delivers a maximum energy density of 1.283 mW h cm^(-2)at 3.128 mW cm^(-2)and a maximum power density of 41.105 mW cm^(-2)at 0.753 mW h cm^(-2).Furthermore,the hybrid SC exhibits a capacity retention of 89.6%even after continuous 10,000 cycles,proving its superior stability.This study provides a facile pathway to rationally design a variety of core-shell metal nanostructures for high-performance energy storage devices.
基金financially supported by the National Natural Science Foundation of China (51877216 and 21773309)Taishan Scholar Foundation (tsqn20161017)+1 种基金the Major Program of Shandong Province Natural Science Foundation (ZR201801280009)the Fundamental Research Funds for the Central Universities(18CX05007A,19CX05001A and 19CX05002A)
文摘Aluminum-ion batteries(AIBs)are a type of promising energy storage device due to their high capacity,high charge transfer efficiency,low cost,and high safety.However,the most investigated graphitic and metal dichalcogenide cathodes normally possess only a moderate capacity and a relatively low cycling stability,respectively,which limit the further development of high-performance AIBs.Here,based on the results of first principles calculations,we developed a polyaniline/graphene oxide composite that exhibited outstanding performances as a cathode material in AIBs(delivering 180 mA h g^−1 after 4000 cycles),considering both the discharge capacity and the cycling performance.Ex-situ characterizations verified that the charge storage mechanism of polyaniline depended on the moderate interactions between−NH in the polyaniline chain and the electrolyte anions,such as AlCl4^−.These findings lay the foundation of the development of high-performance AIBs based on conducting polymers.