期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
有机薄膜电容器的金属化电极 被引量:5
1
作者 曲喜新 《电子元件与材料》 CAS CSCD 1993年第1期19-27,共9页
由于用金属膜作电极的电容器比用金属箔者有很大的优越性,所以近年来在有机薄膜的金属化方面有很多进展。本文系统地论述这些进展。
关键词 薄膜电容器 金属化电极 电容器
下载PDF
如何选择金属化锌铝膜的方阻值 被引量:4
2
作者 冯锦华 《电子元件与材料》 CAS CSCD 1997年第2期53-55,共3页
金属化聚丙烯电容器采用锌铝金属化层,金属化锌铝膜的方阻值选择要从材料、工艺、金属化层结构等方面考虑。根据锌铝膜电容器的主要用途,其最佳方阻值为4.0+0.5-1.
关键词 有机薄膜电容器 金属化电极 电容器 方阻值
下载PDF
A review of anode materials for sodium ion batteries
3
作者 Syed Ali Riza XU Ri-gan +6 位作者 LIU Qi Muhammad Hassan YANG Qiang MU Dao-bin LI Li WU Feng CHEN Ren-jie 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期743-769,共27页
Lithium-ion batteries(LIBs)are used in electric vehicles and portable smart devices,but lithium resources are dwindling and there is an increasing demand which has to be catered for.Sodium ion batteries(SIBs),which ar... Lithium-ion batteries(LIBs)are used in electric vehicles and portable smart devices,but lithium resources are dwindling and there is an increasing demand which has to be catered for.Sodium ion batteries(SIBs),which are less costly,are a promising replacement for LIBs because of the abundant natural reserves of sodium.The anode of a SIB is a necessary component of the battery but is less understood than the cathode.This review outlines the development of various types of anodes,including carbonbased,metallic and organic,which operate using different reaction mechanisms such as intercalation,alloying and conversion,and considers their challenges and prospects.Strategies for modifying their structures by doping and coating,and also modifying the solid electrolyte interface are discussed.In addition,this review also discusses the challenges encountered by the anode of SIBs and the solutions. 展开更多
关键词 Sodium ion batteries ANODE Carbon material Metallic compound ORGANIC
下载PDF
高介薄型陶瓷芯片电容制备工艺研究 被引量:2
4
作者 王春富 黎俊宇 +4 位作者 李彦睿 王文博 张健 秦跃利 钟朝位 《电子元件与材料》 CAS CSCD 北大核心 2022年第9期1001-1006,共6页
研究了高介薄型陶瓷芯片电容的金属化和微小元件的精密切割工艺。分别采用TiW/Au层、TiW/Ni/Au层和TaN/TiW/Au层制备电极,并采用电容器绝缘电阻的偏压特性和温度特性、电容器电容量和介电损耗的温度特性表征了电容在电极金属化工艺中不... 研究了高介薄型陶瓷芯片电容的金属化和微小元件的精密切割工艺。分别采用TiW/Au层、TiW/Ni/Au层和TaN/TiW/Au层制备电极,并采用电容器绝缘电阻的偏压特性和温度特性、电容器电容量和介电损耗的温度特性表征了电容在电极金属化工艺中不同电极材料对高介薄型陶瓷电容器性能的影响,优选出了电极制备的膜系结构。通过选择刀具类型,优化切割固定方法,本工作有效规避了切割崩边和卷边问题,实现了微小元件的精密切割,成功制备出一种性能优异的高介薄型陶瓷芯片电容器。 展开更多
关键词 高介薄型陶瓷 小型化 电极金属化 精密切割工艺
下载PDF
Influence of counter electrode material during accelerated durability test of non-precious metal electrocatalysts in acidic medium 被引量:3
5
作者 李佳 刘会园 +2 位作者 吕洋 郭新闻 宋玉江 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第7期1109-1118,共10页
Significant progress has been made in the development of non-precious metal electrocatalysts (NPMEs) during the past decade. Correspondingly, there is an urgent demand for an appropriate measurement method to be est... Significant progress has been made in the development of non-precious metal electrocatalysts (NPMEs) during the past decade. Correspondingly, there is an urgent demand for an appropriate measurement method to be established for the reliable evaluation of NPMEs. In this study, platinum and graphite counter electrodes were used to investigate the impact of counter electrode material on the accelerated durability testing (ADT) of NPMEs in acidic medium. Platinum used as the coun- ter electrode in a traditional three-electrode electrochemical cell was found to dissolve in acidic medium and re-deposit on NPME coated on the working electrode during ADT. Such re-deposition causes the oxygen reduction reaction (ORR) performance of NPMEs to remarkably improve, and thus will seriously mislead our judgment of NPMEs if we are unaware of it. The phenomenon can be avoided using a graphite counter electrode. 展开更多
关键词 Non-precious metal electrocatalystPlatinum counter electrodeGraphite counter electrodeAccelerated durability testAcid medium
下载PDF
甘氨酸为络合剂时钯和葡萄糖氧化酶的电化学共沉积研究 被引量:1
6
作者 朱侃 吴辉煌 《电化学》 CAS CSCD 2000年第2期157-162,共6页
甘氨酸和Pd(NH3 ) 2 Cl2 组成镀液 ,用于钯和葡萄糖氧化酶 (GOD)的电化学共沉积以制备金属化酶电极、UV/V光谱实验表明甘氨酸能与Pd2 + 离子发生络合作用 ,并使镀液在一定 pH范围内具有较稳定的化学组成 .伏安法实验证实甘氨酸的存在降... 甘氨酸和Pd(NH3 ) 2 Cl2 组成镀液 ,用于钯和葡萄糖氧化酶 (GOD)的电化学共沉积以制备金属化酶电极、UV/V光谱实验表明甘氨酸能与Pd2 + 离子发生络合作用 ,并使镀液在一定 pH范围内具有较稳定的化学组成 .伏安法实验证实甘氨酸的存在降低了Pd的沉积电位 ,有利于防止钯氢化合物的形成 .讨论了钯和GOD电化学共沉积的合适条件 . 展开更多
关键词 甘氨酸 葡萄糖氧化酶 金属化电极
下载PDF
Intergranular Corrosion of AISI 304 Heat Treated at 800℃ Varying Range Times 被引量:1
7
作者 Pedro Rupf Pereira Viana Luiza Venturini Yasmin Siqueira Souza 《Journal of Chemistry and Chemical Engineering》 2015年第4期262-268,共7页
Austenitic stainless steels, when exposed to welding conditions or aging for length of service, it's observed the formation of numerous deleterious phases, such as several kinds of carbides type MC, M6C, M7C3, M23C6,... Austenitic stainless steels, when exposed to welding conditions or aging for length of service, it's observed the formation of numerous deleterious phases, such as several kinds of carbides type MC, M6C, M7C3, M23C6, and intermetallic secondary phases (sigma, chi, laves), which cause the process of intergranular corrosion. The aim of this work was verifying the formation of the types of carbides and/or intermetallic phases existing in the stainless AISI 304 at 800 ℃, varying the timing of heat treatment between 30, 360 and 1,440 min. The optical microscopy analysis revealed the predominant formation of the carbide type M23C6. The results of DL-EPR (double loop electrochemical potentiokinetic reactivation) tests showed a gradual increase in the precipitation of this carbide with the increase of treatment time. The potentiodynamic polarization showed that the precipitation of this carbide reduce the formation of the Cr2O3 passive layer, suggesting that the precipitate carbide to be predominantly of the Cr23C6 type. 展开更多
关键词 Intergranular corrosion M23C6 DL-EPR pitting corrosion.
下载PDF
Self-supporting NiFe LDH-MoS_(x) integrated electrode for highly efficient water splitting at the industrial electrolysis conditions 被引量:4
8
作者 Han Zhang Guoqiang Shen +3 位作者 Xinying Liu Bo Ning Chengxiang Shi Lun Pan 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第10期1732-1741,共10页
Developing effective and practical electrocatalyst under industrial electrolysis conditions is critical for renewable hydrogen production.Herein,we report the self-supporting NiFe LDH-MoS_(x) integrated electrode for ... Developing effective and practical electrocatalyst under industrial electrolysis conditions is critical for renewable hydrogen production.Herein,we report the self-supporting NiFe LDH-MoS_(x) integrated electrode for water oxidation under normal alkaline test condition(1 M KOH at 25℃)and simulated industrial electrolysis conditions(5 M KOH at 65℃).Such optimized electrode exhibits excellent oxygen evolution reaction(OER)performance with overpotential of 195 and 290 mV at current density of 100 and 400 mA·cm^(-2) under normal alkaline test condition.Notably,only over-potential of 156 and 201 mV were required to achieve the current density of 100 and 400mA·cm^(-2) under simulated industrial electrolysis conditions.No significant degradations were observed after long-term durability tests for both conditions.When using in two-electrode system,the operational voltages of 1.44 and 1.72 V were required to achieve a current density of 10 and 100 mA·cm^(-2) for the overall water splitting test(NiFe LDH-MoS_(x)/INF||20%Pt/C).Additionally,the operational voltage of employing NiFe LDH-MoS_(x)/INF as both cathode and anode merely require 1.52 V at 50mA·cm^(-2) at simulated industrial electrolysis conditions.Notably,a membrane electrode assembly(MEA)for anion exchange membrane water electrolysis(AEMWEs)using NiFe LDH-MoS_(x)/INF as an anode catalyst exhibited an energy conversion efficiency of 71.8%at current density of 400 mA·cm^(-2)in 1 M KOH at 60℃.Further experimental results reveal that sulfurized substrate not only improved the conductivity of NiFe LDH,but also regulated its electronic configurations and atomic composition,leading to the excellent activity.The easy-obtained and cost-effective integrated electrodes are expected to meet the large-scale application of industrial water electrolysis. 展开更多
关键词 Self-supporting integrated electrode NiFe LDH Electronic structure modulation Industrial alkaline water electrolysis Membrane-electrode assembly
下载PDF
Decorating non-noble metal plasmonic Al on a TiO2/Cu2O photoanode to boost performance in photoelectrochemical water splitting 被引量:5
9
作者 Shaoce Zhang Zhifeng Liu +2 位作者 Weiguo Yan Zhengang Guo Mengnan Ruan 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第12期1884-1893,共10页
Designing low-cost and high-performance photoelectrodes with improved light harvesting and charge separation rates is significant in photoelectrochemical water splitting.Here,a novel TiO2/Cu2O/Al/Al2O3 photoelectrode ... Designing low-cost and high-performance photoelectrodes with improved light harvesting and charge separation rates is significant in photoelectrochemical water splitting.Here,a novel TiO2/Cu2O/Al/Al2O3 photoelectrode is manufactured by depositing plasmonic nanoparticles of the non-noble metal Al on the surface of a TiO2/Cu2O core/shell heterojunction for the first time.The Al nanoparticles,which exhibit a surface plasmon resonance(SPR)effect and are substantially less expensive than noble metals such as Au and Ag,generate hot electron-hole pairs and amplify the electromagnetic field at the interface under illumination.The as-prepared TiO2/Cu2O/Al/Al2O3 photoelectrodes have an extended absorption range and enhanced carrier separation and transfer.Their photocurrent density of 4.52 mA·cm^-2 at 1.23 V vs.RHE represents an 1.84-fold improvement over that of TiO2/Cu2O.Specifically,the ultrathin Al2O3 passivation layer spontaneously generated on the surface of Al in air could act as a protective layer to significantly increase its stability.In this work,the synergistic effect of the heterojunctions and the SPR effect of the non-noble metal Al significantly improve the photoelectrode performance,providing a novel concept for the design of electrodes with good properties and high practicability. 展开更多
关键词 TIO2 PHOTOANODE Non-noble metal Al Surface plasmon resonance Photoelectrochemical water splitting
下载PDF
Role of transition-metal electrocatalysts for oxygen evolution with Si-based photoanodes 被引量:4
10
作者 Rajender Boddula Guancai Xie +1 位作者 Beidou Guo Jian Ru Gong 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第8期1387-1394,共8页
A comprehensive understanding of the role of the electrocatalyst in photoelectrochemical(PEC)water splitting is central to improving its performance.Herein,taking the Si-based photoanodes(n^(+)p-Si/SiO_(x)/Fe/FeOx/MOO... A comprehensive understanding of the role of the electrocatalyst in photoelectrochemical(PEC)water splitting is central to improving its performance.Herein,taking the Si-based photoanodes(n^(+)p-Si/SiO_(x)/Fe/FeOx/MOOH,M=Fe,Co,Ni)as a model system,we investigate the effect of the transition-metal electrocatalysts on the oxygen evolution reaction(OER).Among the photoanodes with the three different electrocatalysts,the best OER activity,with a low-onset potential of∼1.01 VRHE,a high photocurrent density of 24.10 mA cm^(-2)at 1.23 VRHE,and a remarkable saturation photocurrent density of 38.82 mA cm^(-2),was obtained with the NiOOH overlayer under AM 1.5G simulated sunlight(100 mW cm^(-2))in 1 M KOH electrolyte.The optimal interfacial engineering for electrocatalysts plays a key role for achieving high performance because it promotes interfacial charge transport,provides a larger number of surface active sites,and results in higher OER activity,compared to other electrocatalysts.This study provides insights into how electrocatalysts function in water-splitting devices to guide future studies of solar energy conversion. 展开更多
关键词 Solar water splitting Artificial photosynthesis Oxygen evolution reaction PHOTOANODE Interfacial engineering Transition-metal electrocatalyst
下载PDF
Hydrogen ion beam assisted preparation of metal halide electrodes for batteries
11
作者 Shehdeh Jodeh 《Journal of Chemistry and Chemical Engineering》 2009年第8期19-24,共6页
A new method of preparing thin film metal-hydride electrodes for metal-hydride batteries is described. The method consists of simultaneous deposition of multi-component metallic species onto a substrate while bombardi... A new method of preparing thin film metal-hydride electrodes for metal-hydride batteries is described. The method consists of simultaneous deposition of multi-component metallic species onto a substrate while bombarding the growing, deposited thin film electrode with a low energy hydrogen ion beam An amorphous LaNi4 hydride thin film electrode has been prepared by this Hydrogen Ion Beam Assisted Deposition (HIBAD) technique. The electrochemical discharge capacity and cycle life of this electrode in a 6 M KOH solution surpass previously reported values for La-Ni thin film electrodes prepared by other deposition methods. 展开更多
关键词 hydrides EVAPORATION FILM BATTERIES BEAM
下载PDF
Possibility of Using Ni-Co Alloy As Catalyst for Oxygen Electrode of Fuel Cell
12
作者 Pawel Piotr Wlodarczyk Barbara Wlodarczyk 《Chinese Business Review》 2015年第3期159-167,共9页
In recent years, the scale of use of fuel cells (FCs) has been increasing continuously. One of the essential elements that affect their work is a catalyst. Precious metals (mainly platinum) are known for their hig... In recent years, the scale of use of fuel cells (FCs) has been increasing continuously. One of the essential elements that affect their work is a catalyst. Precious metals (mainly platinum) are known for their high efficiency as FC catalysts. However, their high cost holds back the FCs from application on a large scale. Therefore, catalysts that do not contain precious metals are sought. Studies are focused mainly on the search for fuel electrode catalysts, but for the efficiency of FCs also the oxygen electrode catalyst is of great significance. The paper presents an analysis of the possibilitiesof using Ni-Co alloy as a catalyst for the oxygen electrode of the FC. 展开更多
关键词 fuel cell (FC) renewable energy sources Ni-Co alloy CATALYST ELECTROREDUCTION oxygen electrode
下载PDF
半导体桥装置及制作方法
13
作者 Martinez-Tovar 徐荩 《火工情报》 2002年第1期108-120,共13页
具有半导体元件(10)的起爆装置(24)由被起爆桥(14c)分隔开的半导体垫片(14a,14b)和置于其上喷镀的金属化电极(16a,16b)构成。金属化电极(16a,16b)具有金属钛的底层(18),钛-钨结构的中间层(20)和钨金属的顶层(22)。这种... 具有半导体元件(10)的起爆装置(24)由被起爆桥(14c)分隔开的半导体垫片(14a,14b)和置于其上喷镀的金属化电极(16a,16b)构成。金属化电极(16a,16b)具有金属钛的底层(18),钛-钨结构的中间层(20)和钨金属的顶层(22)。这种多层结构应用简便,与半导体(14)之间粘着力强,能提高半导体特性,避免用铝作金属化电极时,在恶化条件实验(不发火试验,超低发火电压或低发火电流等)中可能出现的电荷迁移问题,半导体(14)可用类似于金属化电极(16a,16b)的分层结构的金属幅或盖覆盖。制作半导体桥装置的方法包含钛金属掺杂,钛-钨金属掺杂和钨金属掺杂。这三层金属以适当比例掺杂在半导体层上制成此发明中的金属化电极(16a,16b)和/或盖幅(117)。 展开更多
关键词 起爆装置 金属化电极 半导体垫片 半导体桥 制作方法
下载PDF
Modeling,fabrication and measurement of a novel CMOS UV/blue-extended photodiode
14
作者 陈长平 赵永嘉 +3 位作者 周晓亚 金湘亮 杨红姣 罗均 《Journal of Central South University》 SCIE EI CAS 2014年第10期3821-3827,共7页
A new complementary metal oxide semiconductor UV/blue-extended photodiode was presented for light detection in the UV/blue spectral range. Photoelectric characteristics of this presented photodiode were studied by num... A new complementary metal oxide semiconductor UV/blue-extended photodiode was presented for light detection in the UV/blue spectral range. Photoelectric characteristics of this presented photodiode were studied by numerical modeling and device simulation. Technology computer aided design simulation was done first to analyze its photoelectric characteristics. The structure characteristic and depletion situation of space between two adjacent P+ anodes were discussed. The reverse characteristic, spectral response characteristic and DC characteristic were discussed in detail. For the numerical modeling, dead layer effect is considered in the building of analytical mode. Dead layer is a space in which the boron doping profile decreases towards the surface due to high doping effects and boron redistribution, which affects the sensitivity of photodiode in the UV range seriously. Reverse characteristics and spectral response characteristics were modeled and analyzed typically. At last, silicon test results were given and compared with the simulated result, which shows reasonable match for each. 展开更多
关键词 device simulation numerical modeling ultraviolet responsivity photoelectric characteristics avalanche breakdown voltage silicon
下载PDF
Realization of low contact resistance close to theoretical limit in graphene transistors 被引量:5
15
作者 Hua Zhong Zhiyong Zhang Bingyan Chen Haitao Xu Dangming Yu Le Huang Lianmao Peng 《Nano Research》 SCIE EI CAS CSCD 2015年第5期1669-1679,共11页
Realizing low contact resistance between graphene and metal electrodes remains a well-known challenge for building high-performance graphene devices. In this work, we attempt to reduce the contact resistance in graphe... Realizing low contact resistance between graphene and metal electrodes remains a well-known challenge for building high-performance graphene devices. In this work, we attempt to reduce the contact resistance in graphene transistors and further explore the resistance limit between graphene and metal contacts. The Pd/graphene contact resistance at room temperature is reduced below the 100 Ω·μm level both on mechanically exfoliated and chemical-vapor-deposition graphene by adopting high-purity palladium and high-quality graphene and controlling the fabrication process to not contaminate the interface. After excluding the parasitic series resistances from the measurement system and electrodes, the retrieved contact resistance is shown to be systematically and statistically less than 100 Ω·μm, with a minimum value of 69 Ω·μm, which is very close to the theoretical limit. Furthermore, the contact resistance shows no clear dependence on temperature in the range of 77-300 K; this is attributed to the saturation of carrier injection efficiency between graphene and Pd owing to the high quality of the graphene samples used, which have a sufficiently long carrier mean-free-path. 展开更多
关键词 graphene field-effect transistors contact resistance metal-graphene interface transfer length method
原文传递
Towards unlocking high-performance of supercapacitors: From layered transition-metal hydroxide electrode to redox electrolyte. 被引量:1
16
作者 WANG HaoXiang ZHANG Wei +1 位作者 CHEN Hong ZHENG WeiTao 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第11期1779-1798,共20页
Both energy density and power density are crucial for a supereapacitor device, where the trade-off must be made between the two factors towards a practical application. Herein we focus on pseudocapacitance produced fr... Both energy density and power density are crucial for a supereapacitor device, where the trade-off must be made between the two factors towards a practical application. Herein we focus on pseudocapacitance produced from the electrode and the electrolyte of supercapacitors to simultaneously achieve high energy density and power density. On the one hand, layered transition metal hydroxides (Ni(OH)2 and Co(OH),,) are introduced as electrodes, followed with exploration of the effect of the active materials and the substrate on the electrochemical behavior. On the other hand, various redox electrolytes are utilized to improve the specific capacitance of an electrolyte. The roadmap is to select an appropriate electrode and a dedicated electrolyte in order to achieve high electrochemical performance of the supercapacitors. 展开更多
关键词 Ni(OH)2 Co(OH)2 redox electrolyte PSEUDOCAPACITANCE SUPERCAPACITOR
原文传递
Advanced non-precious electrocatalyst of the mixed valence CoO_x nanocrystals supported on N-doped carbon nanocages for oxygen reduction 被引量:5
17
作者 Sheng Chen Liwei Wang +8 位作者 Qiang Wu Xiang Li Yu Zhao Hongwei Lai Lijun Yang Tao Sun Yi Li Xizhang Wang Zheng Hu 《Science China Chemistry》 SCIE EI CAS CSCD 2015年第1期180-186,共7页
Taking advantage of the nitrogen(N)-participation and large surface area of N-doped carbon nanocages(NCNCs),the Co Ox nanocrystals are conveniently immobilized onto the NCNCs with high dispersion.The Co Ox/NCNCs hybri... Taking advantage of the nitrogen(N)-participation and large surface area of N-doped carbon nanocages(NCNCs),the Co Ox nanocrystals are conveniently immobilized onto the NCNCs with high dispersion.The Co Ox/NCNCs hybrid exists in the mixed valence with predominant Co O over Co3O4 and demonstrates superb oxygen reduction reaction activity and stability remaining^94%current density even after operation over 100 h.These results suggest a promising strategy to develop advanced electrocatalysts with the novel NCNCs or even beyond. 展开更多
关键词 cobalt oxide nanocrystals fuel cells non-precious electrocatalysts nitrogen doped carbon nanocages oxygen reductionreaction
原文传递
Metal chalcogenide complex-mediated fabrication of Cu_2S film as counter electrode in quantum dot sensitized solar cells 被引量:6
18
作者 YU XueChao ZHU Jun +3 位作者 LIU Feng WEI JunFeng HU LinHua DAI SongYuan 《Science China Chemistry》 SCIE EI CAS 2013年第7期977-981,共5页
Cu2S film onto FTO glass substrate was obtained to function as counter electrode for polysulfide redox reactions in CdS/CdSe co-sensitized solar cells by sintering after spraying a metal chalcogenide complex, N4H9Cu7S... Cu2S film onto FTO glass substrate was obtained to function as counter electrode for polysulfide redox reactions in CdS/CdSe co-sensitized solar cells by sintering after spraying a metal chalcogenide complex, N4H9Cu7S4 solution. Relative to Pt counter electrode, the Cu2S counter electrode provides greater electrocatalytic activity and lower charge transfer resistance. The pre- pared CuzS counter electrode represented nanoflower-like porous film which was composed of Cu2S nanosheets on FTO and had a higher surface area and lower sheet resistance than that of sulfided brass Cu2S counter electrode. An energy conversion efficiency of 3.62% was achieved using the metal chalcogenide complex-mediated fabricated Cu2S counter electrode for CdS/CdSe co-sensitized solar cells under 1 sun, AM 1.5 illumination. 展开更多
关键词 metal chalcogenide complex Cu2S counter electrode catalytic activity quantum dot sensitized solar cells
原文传递
Ternary PtRuTe alloy nanofibers as an efficient and durable electrocatalyst for hydrogen oxidation reaction in alkaline media 被引量:4
19
作者 Si-Yue Ma Tao Ma +2 位作者 Qi Hu Heng-Pan Yang Chuan-Xin He 《Science China Materials》 SCIE EI CAS CSCD 2022年第12期3462-3469,共8页
Sluggish kinetics of anodic hydrogen oxidation reaction(HOR)in alkaline media,which arises from the two orders of magnitude lower HOR activity in alkali than that in acid media for platinum group metals,hinders the co... Sluggish kinetics of anodic hydrogen oxidation reaction(HOR)in alkaline media,which arises from the two orders of magnitude lower HOR activity in alkali than that in acid media for platinum group metals,hinders the commercial implementation of anion exchange membrane fuel cells(AEMFCs).Consequently,the development of platinum-based catalysts combined with high efficiency and durability is urgently required.Herein,we report a facile route for the synthesis of ternary PtRuTe alloy nanofibers with Pt atomic ratio of only 11%via a simple galvanic replacement reaction.We optimize the adsorption strength of platinum and ruthenium towards hydrogen and hydroxyl species by regulating the electron donation from tellurium to platinum and ruthenium.Hence,the obtained trimetallic alloy catalyst exhibits an impressive kinetic current density of 30.6 mA cm^(−2)_(geo) at 50 mV and an exchange current density of 0.426 mA cm^(−2)_(metal),which shows 3.0-and 2.5-fold enhancement compared with the commercial Pt/C in alkaline electrolyte,respectively.Moreover,the catalyst also demonstrates excellent stability with merely 5%activity attenuation after 2000 potential cycles.This work offers new pathways to boost alkaline HOR by rationally designing multicomponent alloys. 展开更多
关键词 alkaline fuel cells hydrogen oxidation reaction ELECTROCATALYSTS Pt-based alloy NANOFIBERS
原文传递
Active catalysts based on cobalt oxide@cobalt/N-C nanocomposites for oxygen reduction reaction in alkaline solutions 被引量:9
20
作者 Dekang Huang Yanping Luo Shaohui Li Bingyan Zhang Yan Shen Mingkui Wang 《Nano Research》 SCIE EI CAS CSCD 2014年第7期1054-1064,共11页
Over the past few years, electrocatalysis for the oxygen reduction reaction in alkaline solutions has undergone tremendous advances, and non-precious metal catalysts are of prime interest. In this study, we present a ... Over the past few years, electrocatalysis for the oxygen reduction reaction in alkaline solutions has undergone tremendous advances, and non-precious metal catalysts are of prime interest. In this study, we present a highly promising CoO@Co/N-C (where N-C represents a N-doped carbon material) catalyst, achieving an onset potential of 0.99 V (versus the reversible hydrogen electrode (RHE)) and a limiting current density of 7.07 mA-cm-2 (at 0.3 V versus RHE) at a rotation rate of 2,500 rpm in an O2-saturated 0.1 M KOH solution, comparable to a commercial Pt/C catalyst. The H2--O2 alkaline fuel cell test of CoO@Co/N-C as the cathode reveals a maximum power density of 237 mW.cm 2. Detailed investigation clarifies that a synergistic effect, induced by C-N, Co-N-C, and CoO/Co moieties, is responsible for the bulk of the gain in catalytic activity. 展开更多
关键词 oxygen reduction reaction ELECTROCATALYSIS COO Co/N-C
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部