针对局部均值分解(Local Mean Decomposition,LMD)方法提取电梯导靴振动信号的故障特征分量时存在的模态混淆现象,本文提出了一种基于奇异值分解(Singular Value Decomposition,SVD)优化局部均值分解(Local Mean Decomposition,LMD)的...针对局部均值分解(Local Mean Decomposition,LMD)方法提取电梯导靴振动信号的故障特征分量时存在的模态混淆现象,本文提出了一种基于奇异值分解(Singular Value Decomposition,SVD)优化局部均值分解(Local Mean Decomposition,LMD)的电梯导靴振动信号故障特征提取方法。该方法以奇异值贡献率原则构造原始信号的Hankel矩阵,采用SVD对Hankel矩阵进行分解;将曲率谱原则与奇异值贡献率原则相结合对奇异值进行选择,将包含主要故障信息的奇异值进行逆重构,得到剔除噪声信号与光滑信号的突变信号;并利用LMD方法对突变信号进行故障特征提取,得到能够突出原始信号振动特征的故障特征分量。实例结果表明该方法有效改善了LMD的模态混淆现象,更准确地提取了振动信号的故障特征分量,为电梯导靴的故障诊断提供了一条有效的途径。展开更多
文摘针对局部均值分解(Local Mean Decomposition,LMD)方法提取电梯导靴振动信号的故障特征分量时存在的模态混淆现象,本文提出了一种基于奇异值分解(Singular Value Decomposition,SVD)优化局部均值分解(Local Mean Decomposition,LMD)的电梯导靴振动信号故障特征提取方法。该方法以奇异值贡献率原则构造原始信号的Hankel矩阵,采用SVD对Hankel矩阵进行分解;将曲率谱原则与奇异值贡献率原则相结合对奇异值进行选择,将包含主要故障信息的奇异值进行逆重构,得到剔除噪声信号与光滑信号的突变信号;并利用LMD方法对突变信号进行故障特征提取,得到能够突出原始信号振动特征的故障特征分量。实例结果表明该方法有效改善了LMD的模态混淆现象,更准确地提取了振动信号的故障特征分量,为电梯导靴的故障诊断提供了一条有效的途径。