This paper discusses a mathematical model for a liquid phase reacting flow occurring at the cathode of a patent pending novel fuel cell geometry, where a non homogeneous catalysis carried by gold and Prussian Blue, wi...This paper discusses a mathematical model for a liquid phase reacting flow occurring at the cathode of a patent pending novel fuel cell geometry, where a non homogeneous catalysis carried by gold and Prussian Blue, with the first reducing air O2 and the second the resulting H2O2. The breathing zone is porous walls microtubes, with three different types of pores in its walls. Inside the microtubes there is water solution of sulfuric acid. The microtubes possess an external layer of extremely porous polymer hydrophobic agent. A Prussian Blue thin porous layer is over the selective membrane. Appropriate porous and tubular connecting elements close the fluid loop. The asymmetry induces proper current and electric potential profiles, which leads to a mainly electrocapillary electrokinetic flow, which enhances the oxygen transport and assures the H2O2 flow to its reduction layer.展开更多
文摘This paper discusses a mathematical model for a liquid phase reacting flow occurring at the cathode of a patent pending novel fuel cell geometry, where a non homogeneous catalysis carried by gold and Prussian Blue, with the first reducing air O2 and the second the resulting H2O2. The breathing zone is porous walls microtubes, with three different types of pores in its walls. Inside the microtubes there is water solution of sulfuric acid. The microtubes possess an external layer of extremely porous polymer hydrophobic agent. A Prussian Blue thin porous layer is over the selective membrane. Appropriate porous and tubular connecting elements close the fluid loop. The asymmetry induces proper current and electric potential profiles, which leads to a mainly electrocapillary electrokinetic flow, which enhances the oxygen transport and assures the H2O2 flow to its reduction layer.