The experimental process of preparing TiO 2 activated carbon complex membranes with activated carbon powder as main carrier, PTFE as binder and wire netting as matrix is described in detail, and both photo catalysis a...The experimental process of preparing TiO 2 activated carbon complex membranes with activated carbon powder as main carrier, PTFE as binder and wire netting as matrix is described in detail, and both photo catalysis and photo electro catalysis are measured to study the properties of complex membranes. Experimental results show that the photo catalytic activity of the membranes is high and stable in the process of treating Rhodamine B; the application of an electric field accelerates the speed of photo catalysis, and the efficiency of photo catalysis is increased 2.5 times when the applied voltage is 0.8 V; and the degradation of Rhodamine B follows the dynamics of first order reaction. It is concluded from the discussion of experimental results that the preparation process of TiO 2 activated carbon complex membranes is a simple low cost process suitable for large scale application.展开更多
A double-sensor probe was used to measure local interfacial parameters of a gas-liquid bubbly flow in a horizontal tube. The parameters included void fraction, interfacial concentration, bubble size distribution, bubb...A double-sensor probe was used to measure local interfacial parameters of a gas-liquid bubbly flow in a horizontal tube. The parameters included void fraction, interfacial concentration, bubble size distribution, bubble frequency and bubble interface velocity. The authors paid special attention to the probe design and construction for minimizing measurement errors. Measures were also taken in the design of sensor ends for preventing corrosions in the flow. This is an effort to improve the current double-sensor probe technique to meet the ever-increasing needs to local parameter measurements in gas-liquid two-phase flows.展开更多
The district heating company "Rigas siltums" operates biomass fuelled boiler in Riga city. Three systems consisting ofbiomass boilers having a comparatively similar heat capacity and particle abatement units like mu...The district heating company "Rigas siltums" operates biomass fuelled boiler in Riga city. Three systems consisting ofbiomass boilers having a comparatively similar heat capacity and particle abatement units like multicyclons, electrostatic precipitators and flue gas condensers are compared. The main goal of the study is to evaluate the boiler plant as a system where solid particles are both emitted and caught. The results show that, the particulate matter can be efficiently trapped from flue gases by the particle abatement technologies, and the electrostatic precipitator with sufficiently large collection surfaces is able to provide appropriate flue gas treatment of the particulate matter in the biomass boilers also without pre-cleaning of the flue gas in multieyelons.展开更多
The population which could not access to electricity was around 1.2 billion in 2010 and is distributed in many low developing countries. With the increase in the population and the economic growth in those countries, ...The population which could not access to electricity was around 1.2 billion in 2010 and is distributed in many low developing countries. With the increase in the population and the economic growth in those countries, waste generation is growing rapid especially for the organic and the plastic, and the uncontrolled waste disposal is becoming more serious issues to manage it. The interest on waste to energy is growing by the above drivers. This research was carried out for aiming to the real world adaption at the minimum cost of the pyrolysis oil from waste biomass in a diesel engine, mainly for electricity generation. The proposal of the appropriate adaptable blend ratio was the major scope rather than the optimization of the engine parameters. For the sake of it, the pyrolysis oil of the waste biomass was produced from a gasification pilot plant in Japan and blended with biodiesel at minimum effort. A small single cylinder diesel engine (direct injection) was used for the experiment with regard to full load power-output, exhaust emissions and fuel consumption.展开更多
The wastes and the by-products of food industrial technologies are suitable for bioenergy generating because of the high organic matter content. Anaerobic digestion is the eldest technology for waste stabilization and...The wastes and the by-products of food industrial technologies are suitable for bioenergy generating because of the high organic matter content. Anaerobic digestion is the eldest technology for waste stabilization and however by controlled decomposition a high value and marketable energy source can be produced. Whey is normally used as a component of dairy products or as an additive for food product. In our work we focused on another utilization method: biogas generating from membrane separated fractions i.e.: permeate and concentrate of whey. The effect of the pH, thermal, microwave pre-treatment and their combinations on the biogas yield were investigated. Our results showed that the applied pre-treatments had significant effect on biogas production. In consequence of the hydrolysis of large molecules the biodegradability of the pre-treated whey fractions was enhanced, therefore the biogas and methane production yield increased significantly.展开更多
Decomposition of dimethyl sulfide (DMS) in air was investigated experimentally by using a wire-cylinder dielectric barrier discharge (DBD) reactor at room temperature and atmospheric pressure.A new type of high pulse ...Decomposition of dimethyl sulfide (DMS) in air was investigated experimentally by using a wire-cylinder dielectric barrier discharge (DBD) reactor at room temperature and atmospheric pressure.A new type of high pulse voltage source with a thyratron switch and a Blumlein pulse-forming network (BPFN) was adopted in our experiments.The maximum power output of the pulse voltage source and the maximum peak voltage were 1kW and 100kV,respectively.The important parameters affecting odor decomposition,including peak voltage,pulse frequency,gas flow rate,initial concentration,and humidity,which influenced the removal efficiency,were investigated.The results showed that DMS could be treated effectively and almost a 100% removal efficiency was achieved at the conditions with an initial concentration of 832mg/m3 and a gas flow rate of 1000ml/min.Humidity boosts the removal efficiency and improves the energy yield (EY) greatly.The EY of 832mg/m3 DMS was 2.87mg/kJ when the relative humidity was above 30%.In the case of DMS removal,the ozone and nitrogen oxides were observed in the exhaust gas.The carbon and sulfur elements of DMS were mainly converted to carbon dioxide,carbon monoxide and sulfur dioxide.Moreover,sulfur was discovered in the reactor.According to the results,the optimization design for the reactor and the matching of high pulse voltage source can be reckoned.展开更多
The chemical vapor deposition (CVD) of graphene on Cu substrates enables the fabrication of large-area monolayer graphene on desired substrates. However, during the transfer of the synthesized graphene, topographic ...The chemical vapor deposition (CVD) of graphene on Cu substrates enables the fabrication of large-area monolayer graphene on desired substrates. However, during the transfer of the synthesized graphene, topographic defects are unavoidably formed along the Cu grain boundaries, degrading the electrical properties of graphene and increasing the device-to-device variability. Here, we introduce a method of hot-pressing as a surface pre-treatment to improve the thermal stability of Cu thin film for the suppression of grain boundary grooving. The flattened Cu thin film maintains its smooth surface even after the subsequent high temperature CVD process necessary for graphene growth, and the formation of graphene without wrinkles is realized. Graphene field effect transistors (FETs) fabricated using the graphene synthesized on hot-pressed Cu thin film exhibit superior field effect mobility and significantly reduced device-to-device variation.展开更多
To date, extensive research has been carried out,with considerable success, on the development of highperformance perovskite solar cells(PSCs). Owing to its wide absorption range and remarkable thermal stability, the ...To date, extensive research has been carried out,with considerable success, on the development of highperformance perovskite solar cells(PSCs). Owing to its wide absorption range and remarkable thermal stability, the mixedcation perovskite FAxMA1-xPbI3(formamidinium/methylammonium lead iodide) promises high performance. However, the ratio of the mixed cations in the perovskite film has proved difficult to control with precursor solution. In addition, the FAxMA1-xPbI3 films contain a high percentage of MA+and suffer from serious phase separation and high trap states, resulting in inferior photovoltaic performance. In this study, to suppress phase separation, a post-processing method was developed to partially nucleate before annealing, by treating the as-prepared intermediate phase FAI-Pb I2-DMSO(DMSO: dimethylsulfoxide) with mixed FAI/MAI solution. It was found that in the final perovskite, FA0.92MA0.08 PbI3, defects were substantially reduced because the analogous molecular structure initiated ion exchange in the post-processed thin perovskite films, which advanced partial nucleation. As a result, the increased light harvesting and reduced trap states contributed to the enhancement of open-circuit voltage and short-circuit current. The PSCs produced by the post-processing method presented reliable reproducibility, with a maximum power conversion efficiency of 20.80% and a degradation of ~30% for 80 days in standard atmospheric conditions.展开更多
文摘The experimental process of preparing TiO 2 activated carbon complex membranes with activated carbon powder as main carrier, PTFE as binder and wire netting as matrix is described in detail, and both photo catalysis and photo electro catalysis are measured to study the properties of complex membranes. Experimental results show that the photo catalytic activity of the membranes is high and stable in the process of treating Rhodamine B; the application of an electric field accelerates the speed of photo catalysis, and the efficiency of photo catalysis is increased 2.5 times when the applied voltage is 0.8 V; and the degradation of Rhodamine B follows the dynamics of first order reaction. It is concluded from the discussion of experimental results that the preparation process of TiO 2 activated carbon complex membranes is a simple low cost process suitable for large scale application.
基金Supported by the National Natural Science Foundation of China(No.59876032)and the Doctorate Foundation of Xi'an Jiaotong University(DFXJU-17).
文摘A double-sensor probe was used to measure local interfacial parameters of a gas-liquid bubbly flow in a horizontal tube. The parameters included void fraction, interfacial concentration, bubble size distribution, bubble frequency and bubble interface velocity. The authors paid special attention to the probe design and construction for minimizing measurement errors. Measures were also taken in the design of sensor ends for preventing corrosions in the flow. This is an effort to improve the current double-sensor probe technique to meet the ever-increasing needs to local parameter measurements in gas-liquid two-phase flows.
文摘The district heating company "Rigas siltums" operates biomass fuelled boiler in Riga city. Three systems consisting ofbiomass boilers having a comparatively similar heat capacity and particle abatement units like multicyclons, electrostatic precipitators and flue gas condensers are compared. The main goal of the study is to evaluate the boiler plant as a system where solid particles are both emitted and caught. The results show that, the particulate matter can be efficiently trapped from flue gases by the particle abatement technologies, and the electrostatic precipitator with sufficiently large collection surfaces is able to provide appropriate flue gas treatment of the particulate matter in the biomass boilers also without pre-cleaning of the flue gas in multieyelons.
文摘The population which could not access to electricity was around 1.2 billion in 2010 and is distributed in many low developing countries. With the increase in the population and the economic growth in those countries, waste generation is growing rapid especially for the organic and the plastic, and the uncontrolled waste disposal is becoming more serious issues to manage it. The interest on waste to energy is growing by the above drivers. This research was carried out for aiming to the real world adaption at the minimum cost of the pyrolysis oil from waste biomass in a diesel engine, mainly for electricity generation. The proposal of the appropriate adaptable blend ratio was the major scope rather than the optimization of the engine parameters. For the sake of it, the pyrolysis oil of the waste biomass was produced from a gasification pilot plant in Japan and blended with biodiesel at minimum effort. A small single cylinder diesel engine (direct injection) was used for the experiment with regard to full load power-output, exhaust emissions and fuel consumption.
文摘The wastes and the by-products of food industrial technologies are suitable for bioenergy generating because of the high organic matter content. Anaerobic digestion is the eldest technology for waste stabilization and however by controlled decomposition a high value and marketable energy source can be produced. Whey is normally used as a component of dairy products or as an additive for food product. In our work we focused on another utilization method: biogas generating from membrane separated fractions i.e.: permeate and concentrate of whey. The effect of the pH, thermal, microwave pre-treatment and their combinations on the biogas yield were investigated. Our results showed that the applied pre-treatments had significant effect on biogas production. In consequence of the hydrolysis of large molecules the biodegradability of the pre-treated whey fractions was enhanced, therefore the biogas and methane production yield increased significantly.
基金Project(No.20576121)supported by the National Natural Science Foundation of China
文摘Decomposition of dimethyl sulfide (DMS) in air was investigated experimentally by using a wire-cylinder dielectric barrier discharge (DBD) reactor at room temperature and atmospheric pressure.A new type of high pulse voltage source with a thyratron switch and a Blumlein pulse-forming network (BPFN) was adopted in our experiments.The maximum power output of the pulse voltage source and the maximum peak voltage were 1kW and 100kV,respectively.The important parameters affecting odor decomposition,including peak voltage,pulse frequency,gas flow rate,initial concentration,and humidity,which influenced the removal efficiency,were investigated.The results showed that DMS could be treated effectively and almost a 100% removal efficiency was achieved at the conditions with an initial concentration of 832mg/m3 and a gas flow rate of 1000ml/min.Humidity boosts the removal efficiency and improves the energy yield (EY) greatly.The EY of 832mg/m3 DMS was 2.87mg/kJ when the relative humidity was above 30%.In the case of DMS removal,the ozone and nitrogen oxides were observed in the exhaust gas.The carbon and sulfur elements of DMS were mainly converted to carbon dioxide,carbon monoxide and sulfur dioxide.Moreover,sulfur was discovered in the reactor.According to the results,the optimization design for the reactor and the matching of high pulse voltage source can be reckoned.
文摘The chemical vapor deposition (CVD) of graphene on Cu substrates enables the fabrication of large-area monolayer graphene on desired substrates. However, during the transfer of the synthesized graphene, topographic defects are unavoidably formed along the Cu grain boundaries, degrading the electrical properties of graphene and increasing the device-to-device variability. Here, we introduce a method of hot-pressing as a surface pre-treatment to improve the thermal stability of Cu thin film for the suppression of grain boundary grooving. The flattened Cu thin film maintains its smooth surface even after the subsequent high temperature CVD process necessary for graphene growth, and the formation of graphene without wrinkles is realized. Graphene field effect transistors (FETs) fabricated using the graphene synthesized on hot-pressed Cu thin film exhibit superior field effect mobility and significantly reduced device-to-device variation.
基金support from the National Key Research and Development Program of China (2016YFA0202401)the 111 Project (B16016)+2 种基金the National Natural Science Foundation of China (51702096 and U1705256)the Fundamental Research Funds for the Central Universities (2018ZD07)Metatest Scan Pro Laser Scanning System
文摘To date, extensive research has been carried out,with considerable success, on the development of highperformance perovskite solar cells(PSCs). Owing to its wide absorption range and remarkable thermal stability, the mixedcation perovskite FAxMA1-xPbI3(formamidinium/methylammonium lead iodide) promises high performance. However, the ratio of the mixed cations in the perovskite film has proved difficult to control with precursor solution. In addition, the FAxMA1-xPbI3 films contain a high percentage of MA+and suffer from serious phase separation and high trap states, resulting in inferior photovoltaic performance. In this study, to suppress phase separation, a post-processing method was developed to partially nucleate before annealing, by treating the as-prepared intermediate phase FAI-Pb I2-DMSO(DMSO: dimethylsulfoxide) with mixed FAI/MAI solution. It was found that in the final perovskite, FA0.92MA0.08 PbI3, defects were substantially reduced because the analogous molecular structure initiated ion exchange in the post-processed thin perovskite films, which advanced partial nucleation. As a result, the increased light harvesting and reduced trap states contributed to the enhancement of open-circuit voltage and short-circuit current. The PSCs produced by the post-processing method presented reliable reproducibility, with a maximum power conversion efficiency of 20.80% and a degradation of ~30% for 80 days in standard atmospheric conditions.