Electrode materials have an important effect on the property of microbial fuel cell(MFC). Carbon foam is utilized as an anode and further modified by urea to improve its performance in marine benthic microbial fuel ce...Electrode materials have an important effect on the property of microbial fuel cell(MFC). Carbon foam is utilized as an anode and further modified by urea to improve its performance in marine benthic microbial fuel cell(BMFC) with higher voltage and output power. The electrochemical properties of plain carbon foam(PC) and urea-modified carbon foam(UC) are measured respectively. Results show that the UC obtains better wettability after its modification and higher anti-polarization ability than the PC. A novel phenomenon has been found that the electrical potential of the modified UC anode is nearly 100 m V lower than that of the PC, reaching-570 ±10 m V(vs. SCE), and that it also has a much higher electron transfer kinetic activity, reaching 9399.4 m W m-2, which is 566.2-fold higher than that from plain graphite anode(PG). The fuel cell containing the UC anode has the maximum power density(256.0 m W m-2) among the three different BMFCs. Urea would enhance the bacteria biofilm formation with a more diverse microbial community and maintain more electrons, leading to a lower anodic redox potential and higher power output. The paper primarily analyzes why the electrical potential of the modified anode becomes much lower than that of others after urea modification. These results can be utilized to construct a novel BMFC with higher output power and to design the conditioner of voltage booster with a higher conversion ratio. Finally, the carbon foam with a bigger pore size would be a potential anodic material in conventional MFC.展开更多
Ultrasmall gold nanoclusters consisting of 2-4 Au atoms were synthesized and their per- formance in electrocatalytic oxygen reduction reactions (ORR) was examined. These clus- ters were synthesized by exposing AuPPh...Ultrasmall gold nanoclusters consisting of 2-4 Au atoms were synthesized and their per- formance in electrocatalytic oxygen reduction reactions (ORR) was examined. These clus- ters were synthesized by exposing AuPPh3Cl to the aqueous ammonia medium for one week. Electrospray ionization mass spectrometry (ESI-MS), X-ray absorption fihe struc- ture (XAFS), and X-ray photoelectron spectroscopy (XPS) analyses indicate that the as- synthesized gold clusters (abbreviated as Aux) consist of 2-4 Au atoms coordinated by the triphenylphosphine, hydroxyl, and adsorbed oxygen ligands. A glassy carbon disk electrode loaded with the Aux clusters (Aux/GC) was characterized by the cyclic and linear-sweep voltammetry for ORR. The cyclic voltammogram vs. RHE shows the onset potential of 0.87 V, and the kinetic parameters of JK at 0.47 V and the electron-transfer mmlber per oxygen molecule were calculated to be 14.28 mA/cm2 and 3.96 via the Koutecky-Levich equations, respectively.展开更多
A hydrophilic radical polymer, poly(2,2,6,6-teteramethylpiperidinyloxyl-4-yl acrylamide) (PTAm), was synthesized via oxidation of the corresponding precursor polymer, poly(2,2,6,6-teteramethylpiperidine-4-yl acry...A hydrophilic radical polymer, poly(2,2,6,6-teteramethylpiperidinyloxyl-4-yl acrylamide) (PTAm), was synthesized via oxidation of the corresponding precursor polymer, poly(2,2,6,6-teteramethylpiperidine-4-yl acrylamide). Electrochemical properties of the PTAm layer were characterized in three aqueous electrolytes of sodium chloride (NaCl), sodium tetrafluoroborate (NaBF4), and sodium hexafluorophosphate (NaPF6) to optimize its activity as an organic cathode. The counter anion species significantly affected the capacity and the cycle performance of the PTAm layer. The PTAm layer in the presence of BF4? displayed quantitative redox capacity beyond 1 μm layer thickness and maintained the discharging capacity of 110 mAh g-1 (97% vs. the calculated capacity) even after 1000 cycle charging/discharging, which could be ascribed to its appropriate affinity to the aqueous electrolyte without any dissolution into the electrolyte. A totally organic-based rechargeable cell was fabricated using PTAm and poly(N-4,4'-bipyridinium-N-decamethylene dibromide) as the cathode and the anode, respectively, and the aqueous electrolyte of NaBF4. The cell gave a plateau voltage at 1.2 V both on charging and discharging and an excellent charging/discharging cyclability of >2000 with high coulombic efficiency of >95%.展开更多
Both energy density and power density are crucial for a supereapacitor device, where the trade-off must be made between the two factors towards a practical application. Herein we focus on pseudocapacitance produced fr...Both energy density and power density are crucial for a supereapacitor device, where the trade-off must be made between the two factors towards a practical application. Herein we focus on pseudocapacitance produced from the electrode and the electrolyte of supercapacitors to simultaneously achieve high energy density and power density. On the one hand, layered transition metal hydroxides (Ni(OH)2 and Co(OH),,) are introduced as electrodes, followed with exploration of the effect of the active materials and the substrate on the electrochemical behavior. On the other hand, various redox electrolytes are utilized to improve the specific capacitance of an electrolyte. The roadmap is to select an appropriate electrode and a dedicated electrolyte in order to achieve high electrochemical performance of the supercapacitors.展开更多
MXenes, a new family of multifunctional two dimensional(2D) solid crystals integrating high electroconductivity and rich surface chemistries, are promising candidates for electrolysis, which, however, have rarely been...MXenes, a new family of multifunctional two dimensional(2D) solid crystals integrating high electroconductivity and rich surface chemistries, are promising candidates for electrolysis, which, however, have rarely been reported. Herein, free-standing ultrathin 2D MXene nanosheets were successfully fabricated from bulky and rigid MAX phase ceramics by liquid exfoliation with HF etching(delamination) and TPAOH intercalation(disintegration).The high oxygen reduction reaction(ORR) performance has been obtained, due to the extremely small thickness of the asfabricated Ti3C2 around 0.5–2.0 nm, equivalent to the dimensions of single-layer or double-layer Ti3C2 nanosheets in thickness. The ORR performance of the obtained Ti3C2 MXene-based catalyst exhibits desirable activity and stability in alkaline media. This study demonstrates the potential of earth-abundant 2D MXenes for constructing high-performance and cost-effective electrocatalysts.展开更多
Introducing redox species into the electrolytes of traditional electric double layer capacitors(EDLCs)is an efficient strategy to enhance their energy density owing to Faradic reactions.However,few studies have elucid...Introducing redox species into the electrolytes of traditional electric double layer capacitors(EDLCs)is an efficient strategy to enhance their energy density owing to Faradic reactions.However,few studies have elucidated the effect of the molecular structures of organic redox species on the performance of relative supercapacitors,which is important in the development of redox additives for super-capacitors.In this context,we synthesized several viologens and used them as new organic redox additives for super-capacitors with organic electrolytes.The detailed experimental analysis and theoretical calculation results show that the electrochemical performance of viologens relies heavily on their side chains and conjugated cores.Specifically,the side chains of the viologens affect their electronic structures and are consistent with behaviours between the molecules and the electrode pores due to the size effect,thus influencing their specific capacities.In addition,a larger conjugated aromatic core endows viologens with a smaller band gap and a higher degree of electron delocalization,resulting in better rate performance and cycling stability.Consequently,aπ-conjugated viologen derivative is selected as a favourable additive and enables an EDLC-type supercapacitor to exhibit a high energy density(34.0 W h kg^−1 at 856 W kg^−1)and good cycling performance.展开更多
Triuranium octoxide-reduced graphene oxide (U3O8/rGO) hybrids have been prepared by a two-step solution-phase method. The presence of GO is essential in order to obtain pure phase U3O8. The U3O8/rGO hybrids exhibite...Triuranium octoxide-reduced graphene oxide (U3O8/rGO) hybrids have been prepared by a two-step solution-phase method. The presence of GO is essential in order to obtain pure phase U3O8. The U3O8/rGO hybrids exhibited excellent electrocatalytic activity for the oxygen reduction reaction. The electron transfer number was calculated to be -3.9 at -0.7 V (vs. Ag/AgCl) from the slope of the Koutecky-Levich plots. The U3O8/rGO hybrids were more stable than commercial Pt/C catalysts. Furthermore, when methanol was present, the U3O8/rGO hybrids still retained high activity. In addition, the UBO8/rGO hybrids can also catalyze the reduction of hydrogen peroxide.展开更多
Pt3Ni nanoparticles have been obtained by shape-controlled synthesis and employed as oxygen reduction electrocatalysts for proton exchange membrane fuel cells (PEMFC). The effects of varying the synthesis parameters...Pt3Ni nanoparticles have been obtained by shape-controlled synthesis and employed as oxygen reduction electrocatalysts for proton exchange membrane fuel cells (PEMFC). The effects of varying the synthesis parameters such as the types of the capping agent and the reducing agent, and the reaction time have been systematically studied. The as-prepared PtBNi nanoparticles were subjected to a butylamine-based surface treatment in order to prepare carbon-supported electrocatalysts. The Pt3Ni electrocatalysts show an area- specific activity of 0.76 mA/cm2(pt) at 0.9 V in an alkaline electrolyte, which is 4.5 times that of a commercial Pt/C catalyst (0.17 mA/cm2 (Pt)). The mass activity reached 0.30 A/mg(Pt) at 0.9 V, which is about twice that of the commercial Pt/C catalyst. Our results also show that the area-specific activities of these carbon-supported Pt3Ni electrocatalysts depend strongly on the (111) surface fraction, which is consistent with the results of a study based on Pt3Ni extended single-crystal surfaces.展开更多
Designing high active,low cost and bifunctional electrocatalysts is urgent for developing clean energy storage and conversion systems.Transition metal selenides exhibit optimal electronic conductivity and tunable phys...Designing high active,low cost and bifunctional electrocatalysts is urgent for developing clean energy storage and conversion systems.Transition metal selenides exhibit optimal electronic conductivity and tunable physicochemical properties,which endow them with potential for efficient electrocatalysts to facilitate the oxygen reduction and oxygen evolution reactions(ORR and OER).Herein,hollow NixCo0.85-xSe nanospheres were synthesized using a facile polyol based solution chemical method.The NixCo0.85-xSe exhibits an onset overpotential of 0.89 V for ORR,and an overpotential of 305 mV to achieve 10 mA cm^-2 for OER.Moreover,the NixCo0.85-xSe based Zn-air battery displays remarkable specific capacity and durability.Such superior catalytic performances can be attributed to the synergistic effect,large specific surface area and enhanced electron transfer rate.This approach provides a new way to design highly efficient bifunctional electrocatalysts for electrochemical energy storage and utilization.展开更多
基金supported by the Key Project of Natural Science Fund of Shandong Province,China(ZR2011 BZ008)the Special Fund of Marine Renewable Energy from State Ocean Bureau,China(GHME2011GD 04)
文摘Electrode materials have an important effect on the property of microbial fuel cell(MFC). Carbon foam is utilized as an anode and further modified by urea to improve its performance in marine benthic microbial fuel cell(BMFC) with higher voltage and output power. The electrochemical properties of plain carbon foam(PC) and urea-modified carbon foam(UC) are measured respectively. Results show that the UC obtains better wettability after its modification and higher anti-polarization ability than the PC. A novel phenomenon has been found that the electrical potential of the modified UC anode is nearly 100 m V lower than that of the PC, reaching-570 ±10 m V(vs. SCE), and that it also has a much higher electron transfer kinetic activity, reaching 9399.4 m W m-2, which is 566.2-fold higher than that from plain graphite anode(PG). The fuel cell containing the UC anode has the maximum power density(256.0 m W m-2) among the three different BMFCs. Urea would enhance the bacteria biofilm formation with a more diverse microbial community and maintain more electrons, leading to a lower anodic redox potential and higher power output. The paper primarily analyzes why the electrical potential of the modified anode becomes much lower than that of others after urea modification. These results can be utilized to construct a novel BMFC with higher output power and to design the conditioner of voltage booster with a higher conversion ratio. Finally, the carbon foam with a bigger pore size would be a potential anodic material in conventional MFC.
基金supported by the National Natural Science Foundation of China(No.11475176,No.U1632263,and No.21533007)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.11621063)
文摘Ultrasmall gold nanoclusters consisting of 2-4 Au atoms were synthesized and their per- formance in electrocatalytic oxygen reduction reactions (ORR) was examined. These clus- ters were synthesized by exposing AuPPh3Cl to the aqueous ammonia medium for one week. Electrospray ionization mass spectrometry (ESI-MS), X-ray absorption fihe struc- ture (XAFS), and X-ray photoelectron spectroscopy (XPS) analyses indicate that the as- synthesized gold clusters (abbreviated as Aux) consist of 2-4 Au atoms coordinated by the triphenylphosphine, hydroxyl, and adsorbed oxygen ligands. A glassy carbon disk electrode loaded with the Aux clusters (Aux/GC) was characterized by the cyclic and linear-sweep voltammetry for ORR. The cyclic voltammogram vs. RHE shows the onset potential of 0.87 V, and the kinetic parameters of JK at 0.47 V and the electron-transfer mmlber per oxygen molecule were calculated to be 14.28 mA/cm2 and 3.96 via the Koutecky-Levich equations, respectively.
基金supported by Grants-in-Aid for Scientific Research (19105003)Global COE Program at Waseda University from MEXT, JapanResearch Project "Radical Polymers" at Advanced Research Institute for Science & Engineering, Waseda University
文摘A hydrophilic radical polymer, poly(2,2,6,6-teteramethylpiperidinyloxyl-4-yl acrylamide) (PTAm), was synthesized via oxidation of the corresponding precursor polymer, poly(2,2,6,6-teteramethylpiperidine-4-yl acrylamide). Electrochemical properties of the PTAm layer were characterized in three aqueous electrolytes of sodium chloride (NaCl), sodium tetrafluoroborate (NaBF4), and sodium hexafluorophosphate (NaPF6) to optimize its activity as an organic cathode. The counter anion species significantly affected the capacity and the cycle performance of the PTAm layer. The PTAm layer in the presence of BF4? displayed quantitative redox capacity beyond 1 μm layer thickness and maintained the discharging capacity of 110 mAh g-1 (97% vs. the calculated capacity) even after 1000 cycle charging/discharging, which could be ascribed to its appropriate affinity to the aqueous electrolyte without any dissolution into the electrolyte. A totally organic-based rechargeable cell was fabricated using PTAm and poly(N-4,4'-bipyridinium-N-decamethylene dibromide) as the cathode and the anode, respectively, and the aqueous electrolyte of NaBF4. The cell gave a plateau voltage at 1.2 V both on charging and discharging and an excellent charging/discharging cyclability of >2000 with high coulombic efficiency of >95%.
基金supported by the National Natural Science Foundation of China(Grant No.51372095)the Special Funding for Academic Leaders at Jilin University(Grant No.419080500273)
文摘Both energy density and power density are crucial for a supereapacitor device, where the trade-off must be made between the two factors towards a practical application. Herein we focus on pseudocapacitance produced from the electrode and the electrolyte of supercapacitors to simultaneously achieve high energy density and power density. On the one hand, layered transition metal hydroxides (Ni(OH)2 and Co(OH),,) are introduced as electrodes, followed with exploration of the effect of the active materials and the substrate on the electrochemical behavior. On the other hand, various redox electrolytes are utilized to improve the specific capacitance of an electrolyte. The roadmap is to select an appropriate electrode and a dedicated electrolyte in order to achieve high electrochemical performance of the supercapacitors.
基金financially supported by the National Key R&D Program of China (2016YFA0203700)the National Natural Science Foundation of China (51702099, 51672303 and 51722211)+5 种基金the Program of Shanghai Academic Research Leader (18XD1404300)Young Elite Scientist Sponsorship Program by CAST (2015QNRC001)Youth Innovation Promotion Association of the Chinese Academy of Sciences (2013169)Shanghai Sailing Program (17YF1403800)China Postdoctoral Science Foundation funded project (2017M611500)the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure (SKL201702SIC)
文摘MXenes, a new family of multifunctional two dimensional(2D) solid crystals integrating high electroconductivity and rich surface chemistries, are promising candidates for electrolysis, which, however, have rarely been reported. Herein, free-standing ultrathin 2D MXene nanosheets were successfully fabricated from bulky and rigid MAX phase ceramics by liquid exfoliation with HF etching(delamination) and TPAOH intercalation(disintegration).The high oxygen reduction reaction(ORR) performance has been obtained, due to the extremely small thickness of the asfabricated Ti3C2 around 0.5–2.0 nm, equivalent to the dimensions of single-layer or double-layer Ti3C2 nanosheets in thickness. The ORR performance of the obtained Ti3C2 MXene-based catalyst exhibits desirable activity and stability in alkaline media. This study demonstrates the potential of earth-abundant 2D MXenes for constructing high-performance and cost-effective electrocatalysts.
基金funding support from the Ministry of Science and Technology of China(2012CB933403)Beijing Natural Science Foundation(2182086)the National Natural Science Foundation of China(51425302 and 51302045)。
文摘Introducing redox species into the electrolytes of traditional electric double layer capacitors(EDLCs)is an efficient strategy to enhance their energy density owing to Faradic reactions.However,few studies have elucidated the effect of the molecular structures of organic redox species on the performance of relative supercapacitors,which is important in the development of redox additives for super-capacitors.In this context,we synthesized several viologens and used them as new organic redox additives for super-capacitors with organic electrolytes.The detailed experimental analysis and theoretical calculation results show that the electrochemical performance of viologens relies heavily on their side chains and conjugated cores.Specifically,the side chains of the viologens affect their electronic structures and are consistent with behaviours between the molecules and the electrode pores due to the size effect,thus influencing their specific capacities.In addition,a larger conjugated aromatic core endows viologens with a smaller band gap and a higher degree of electron delocalization,resulting in better rate performance and cycling stability.Consequently,aπ-conjugated viologen derivative is selected as a favourable additive and enables an EDLC-type supercapacitor to exhibit a high energy density(34.0 W h kg^−1 at 856 W kg^−1)and good cycling performance.
文摘Triuranium octoxide-reduced graphene oxide (U3O8/rGO) hybrids have been prepared by a two-step solution-phase method. The presence of GO is essential in order to obtain pure phase U3O8. The U3O8/rGO hybrids exhibited excellent electrocatalytic activity for the oxygen reduction reaction. The electron transfer number was calculated to be -3.9 at -0.7 V (vs. Ag/AgCl) from the slope of the Koutecky-Levich plots. The U3O8/rGO hybrids were more stable than commercial Pt/C catalysts. Furthermore, when methanol was present, the U3O8/rGO hybrids still retained high activity. In addition, the UBO8/rGO hybrids can also catalyze the reduction of hydrogen peroxide.
文摘Pt3Ni nanoparticles have been obtained by shape-controlled synthesis and employed as oxygen reduction electrocatalysts for proton exchange membrane fuel cells (PEMFC). The effects of varying the synthesis parameters such as the types of the capping agent and the reducing agent, and the reaction time have been systematically studied. The as-prepared PtBNi nanoparticles were subjected to a butylamine-based surface treatment in order to prepare carbon-supported electrocatalysts. The Pt3Ni electrocatalysts show an area- specific activity of 0.76 mA/cm2(pt) at 0.9 V in an alkaline electrolyte, which is 4.5 times that of a commercial Pt/C catalyst (0.17 mA/cm2 (Pt)). The mass activity reached 0.30 A/mg(Pt) at 0.9 V, which is about twice that of the commercial Pt/C catalyst. Our results also show that the area-specific activities of these carbon-supported Pt3Ni electrocatalysts depend strongly on the (111) surface fraction, which is consistent with the results of a study based on Pt3Ni extended single-crystal surfaces.
基金supported by the National Natural Science Foundation of China (51804216)a scholarship from the China Scholarship Council (CSC) (201806255078)
文摘Designing high active,low cost and bifunctional electrocatalysts is urgent for developing clean energy storage and conversion systems.Transition metal selenides exhibit optimal electronic conductivity and tunable physicochemical properties,which endow them with potential for efficient electrocatalysts to facilitate the oxygen reduction and oxygen evolution reactions(ORR and OER).Herein,hollow NixCo0.85-xSe nanospheres were synthesized using a facile polyol based solution chemical method.The NixCo0.85-xSe exhibits an onset overpotential of 0.89 V for ORR,and an overpotential of 305 mV to achieve 10 mA cm^-2 for OER.Moreover,the NixCo0.85-xSe based Zn-air battery displays remarkable specific capacity and durability.Such superior catalytic performances can be attributed to the synergistic effect,large specific surface area and enhanced electron transfer rate.This approach provides a new way to design highly efficient bifunctional electrocatalysts for electrochemical energy storage and utilization.