期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
电池健康程度差异下的电动公交线路车辆调度方法 被引量:2
1
作者 别一鸣 朱奥泽 从远 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第10期11-21,共11页
电动公交车在运行过程中具有零排放、低能耗等优势,目前各个国家正在大力推进城市公交车辆的电动化,以减少交通系统碳排放,助力实现“双碳”目标。然而受资金约束以及燃油公交车尚未达到报废年限的影响,公交企业通常分批购买电动公交车... 电动公交车在运行过程中具有零排放、低能耗等优势,目前各个国家正在大力推进城市公交车辆的电动化,以减少交通系统碳排放,助力实现“双碳”目标。然而受资金约束以及燃油公交车尚未达到报废年限的影响,公交企业通常分批购买电动公交车来替换线路上的燃油公交车,导致线路上各辆公交车的电池健康程度以及续驶里程存在差异,使得车辆调度方案优化更加复杂。本研究针对电动公交线路各辆公交车电池健康程度存在差异的情况,考虑分时电价影响,以最小化每日的充电成本、车辆购置成本和电池损耗成本为目标,建立了单线路车辆调度方案优化模型。将优化模型重构为车辆行车计划优化与充电计划优化两个子问题,其中在外层考虑车辆运营强度差异对模拟退火算法的扰动策略进行改进,采用改进后的模拟退火算法求解车辆行车计划;在内层调用Gurobi求解车辆充电计划。最后,以某市一条实际电动公交线路为例验证方法的有效性,并与扰动策略中不考虑车辆运营强度差异的模拟退火算法进行比较。结果表明:本文设计的改进模拟退火算法使收敛速度提高31.8%,能够在短时间内求得质量较高的解;生成的调度方案不仅能够安排车辆优先在低电价时段充电,还可以缩小车队规模。 展开更多
关键词 公共交通 电动公交车 线路调度 电池健康程度 模拟退火算法
下载PDF
Deep Learning Hybrid Model for Lithium-Ion Battery Aging Estimation and Prediction
2
作者 项越 姜波 戴海峰 《同济大学学报(自然科学版)》 EI CAS 2024年第S01期215-222,共8页
The degradation process of lithium-ion batteries is intricately linked to their entire lifecycle as power sources and energy storage devices,encompassing aspects such as performance delivery and cycling utilization.Co... The degradation process of lithium-ion batteries is intricately linked to their entire lifecycle as power sources and energy storage devices,encompassing aspects such as performance delivery and cycling utilization.Consequently,the accurate and expedient estimation or prediction of the aging state of lithium-ion batteries has garnered extensive attention.Nonetheless,prevailing research predominantly concentrates on either aging estimation or prediction,neglecting the dynamic fusion of both facets.This paper proposes a hybrid model for capacity aging estimation and prediction based on deep learning,wherein salient features highly pertinent to aging are extracted from charge and discharge relaxation processes.By amalgamating historical capacity decay data,the model dynamically furnishes estimations of the present capacity and forecasts of future capacity for lithium-ion batteries.Our approach is validated against a novel dataset involving charge and discharge cycles at varying rates.Specifically,under a charging condition of 0.25 C,a mean absolute percentage error(MAPE)of 0.29%is achieved.This outcome underscores the model's adeptness in harnessing relaxation processes commonly encountered in the real world and synergizing with historical capacity records within battery management systems(BMS),thereby affording estimations and prognostications of capacity decline with heightened precision. 展开更多
关键词 lithium-ion battery state of health deep learning relaxation process
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部