An investigation was performed on the suitability of carbon materials, metallic lead and its alloys as substrates for zinc negative electrode in acid PbO2-Zn single flow batteries. The zinc deposition process was carr...An investigation was performed on the suitability of carbon materials, metallic lead and its alloys as substrates for zinc negative electrode in acid PbO2-Zn single flow batteries. The zinc deposition process was carried out in the mediumofl mol.L 1H2SO4 at room temperature. No maximum current appears on the potentiostatic current transients for the zinc deposition on lead and its alloys. With increasing overpotential, the progressive nucleation turns to be a 3D-instantaneous nucleation process for the resin-graphite composite. Hydrogen evolution on the graphite composite is effectively suppressed with the doping of a polymer resin. The hydrogen evolution reaction on the lead is relatively weak, while on the lead alloys, it becomes serious to a certain degree. Although the ex- change current density of zinc deposition and dissolution process on the graphite composite is relatively low, the zinc corrosion is weakened to a great extent. With the increase of deposition time, zinc deposits are more compact. The cyclings of zinc galvanostatic charge-discharge on the graphite composite provide more than 90% of coulombic and 80% of energy efficiencies, and exhibit superior cycling stability during the first 10 cycles.展开更多
Fluorine doped tin oxide SnO2:F thin films were prepared by the spray pyrolysis (SP) technique on glass substrates by using SnC12.2H2O as a precursor and NH4F and HF as doping compounds. A comparison between the pr...Fluorine doped tin oxide SnO2:F thin films were prepared by the spray pyrolysis (SP) technique on glass substrates by using SnC12.2H2O as a precursor and NH4F and HF as doping compounds. A comparison between the properties of the films obtained by using the two doping compounds was performed by using I-V characteristics in the dark at room temperature, AC measurements, and transmittance. It is found that the films prepared by using HF have smaller resistivity, lower impedance and they are less capacitive than films prepared by using NH4F. In addition, these films have higher transmittance, higher optical bandgap energy and narrower Urbach tail width. These results are interesting for the use of SnO2:F as forecontact in CdS/CdTe solar cells.展开更多
Recycling useful materials such as Ag, Al, Sn, Cu and Si from waste silicon solar cell chips is a sustainable project to slow down the ever-growing amount of waste crystalline-silicon photovoltaic panels. However, the...Recycling useful materials such as Ag, Al, Sn, Cu and Si from waste silicon solar cell chips is a sustainable project to slow down the ever-growing amount of waste crystalline-silicon photovoltaic panels. However, the recovery cost of the above-mentioned materials from silicon chips via acid-alkaline treatments outweights the gain economically.Herein, we propose a new proof-of-concept to fabricate Si-based anodes with waste silicon chips as raw materials.Nanoparticles from waste silicon chips were prepared with the high-energy ball milling followed by introducing carbon nanotubes and N-doped carbon into the nanoparticles, which amplifies the electrochemical properties. It is explored that Al and Ag elements influenced electrochemical performance respectively. The results showed that the Al metal in the composite possesses an adverse impact on the electrochemical performance. After removing Al, the composite was confirmed to possess a pronounced durable cycling property due to the presence of Ag, resulting in significantly more superior property than the composite having both Al and Ag removed.展开更多
In the United States, university buildings use 17% of total non-residential building energy per year. According to the NREL (National Renewable Energy Laboratory), the average lifecycle of a building in a university...In the United States, university buildings use 17% of total non-residential building energy per year. According to the NREL (National Renewable Energy Laboratory), the average lifecycle of a building in a university is 42 years with an EUI (energy use intensity) of 23 kWh/m^2/y. Current building and energy codes limit the EUI to 16 kWh/m^2/y for new school buildings; this benchmark can vary depending on climate, occupancy, and other contextual factors. Although the LEED (leadership in energy and environmental design) system provides a set of guidelines to rate sustainable buildings, studies have shown that 28%-35% of the educational LEED-rated buildings use more energy than their conventional counterparts. This paper examines the issues specific to a LEED-rated design addition to an existing university building. The forum, a lecture hall expansion of to an existing building at the University of Kansas, has been proposed as environmentally friendly and energy-efficient building addition. Comfort and health aspects have been considered in the design in order to obtain LEED platinum certificate. The forum's energy performance strategies include a double-skin facade to reduce energy consumption and PV (photovoltaic) panels to generate onsite energy. This study considers various scenarios to meet NZEB (net-zero energy building) criteria and maximize energy savings. The feasibility of NZE criteria is evaluated for: (a) seasonal comparison; (b) facility occupancy; (c) PV panels' addition in relation to double skin facade. The results of NZEB approach are compared to LEED platinum requirements, based on Rol (return on investment) and PV panel's efficiency for this specific educational building.展开更多
To study the ferroelectric photovoltaic effect based on polycrystalline films, preparation of high-quality polycrystalline films with low leakage and high remnant polarization is essential. Polycrystalline BiFeO3 (BF...To study the ferroelectric photovoltaic effect based on polycrystalline films, preparation of high-quality polycrystalline films with low leakage and high remnant polarization is essential. Polycrystalline BiFeO3 (BFO) thin films with extremely large remnant polarization (2Pr = 180 ~aC/cm2) were successfully deposited on glass substrates coated with indium tin oxide using a modified radio frequency magnetron sputtering method. Symmetric and asymmetric cells were constructed to investigate the ferroelectric photovoltaic effect in order to understand the relationship between polarization and photovoltaic response. All examined cells showed polarization-induced photovoltaic effect. Our findings also showed that the ferroelectric photovoltaic effect is highly dependent on the material used for the top electrode and the thickness of the polycrystalline film.展开更多
基金Supported by the National Basic Research Program(973 Program)of China(2010CB227201)the State Key Program of National Natural Science of China(21236003)+2 种基金the National Natural Science Foundation of China(21476022)the Fundamental Research Funds for the Central Universities(JD1515 and YS1406)Beijing Higher Education Young Elite Teacher Project(YETP0509)
文摘An investigation was performed on the suitability of carbon materials, metallic lead and its alloys as substrates for zinc negative electrode in acid PbO2-Zn single flow batteries. The zinc deposition process was carried out in the mediumofl mol.L 1H2SO4 at room temperature. No maximum current appears on the potentiostatic current transients for the zinc deposition on lead and its alloys. With increasing overpotential, the progressive nucleation turns to be a 3D-instantaneous nucleation process for the resin-graphite composite. Hydrogen evolution on the graphite composite is effectively suppressed with the doping of a polymer resin. The hydrogen evolution reaction on the lead is relatively weak, while on the lead alloys, it becomes serious to a certain degree. Although the ex- change current density of zinc deposition and dissolution process on the graphite composite is relatively low, the zinc corrosion is weakened to a great extent. With the increase of deposition time, zinc deposits are more compact. The cyclings of zinc galvanostatic charge-discharge on the graphite composite provide more than 90% of coulombic and 80% of energy efficiencies, and exhibit superior cycling stability during the first 10 cycles.
文摘Fluorine doped tin oxide SnO2:F thin films were prepared by the spray pyrolysis (SP) technique on glass substrates by using SnC12.2H2O as a precursor and NH4F and HF as doping compounds. A comparison between the properties of the films obtained by using the two doping compounds was performed by using I-V characteristics in the dark at room temperature, AC measurements, and transmittance. It is found that the films prepared by using HF have smaller resistivity, lower impedance and they are less capacitive than films prepared by using NH4F. In addition, these films have higher transmittance, higher optical bandgap energy and narrower Urbach tail width. These results are interesting for the use of SnO2:F as forecontact in CdS/CdTe solar cells.
基金Project(51774343) supported by the National Natural Science Foundation of China。
文摘Recycling useful materials such as Ag, Al, Sn, Cu and Si from waste silicon solar cell chips is a sustainable project to slow down the ever-growing amount of waste crystalline-silicon photovoltaic panels. However, the recovery cost of the above-mentioned materials from silicon chips via acid-alkaline treatments outweights the gain economically.Herein, we propose a new proof-of-concept to fabricate Si-based anodes with waste silicon chips as raw materials.Nanoparticles from waste silicon chips were prepared with the high-energy ball milling followed by introducing carbon nanotubes and N-doped carbon into the nanoparticles, which amplifies the electrochemical properties. It is explored that Al and Ag elements influenced electrochemical performance respectively. The results showed that the Al metal in the composite possesses an adverse impact on the electrochemical performance. After removing Al, the composite was confirmed to possess a pronounced durable cycling property due to the presence of Ag, resulting in significantly more superior property than the composite having both Al and Ag removed.
文摘In the United States, university buildings use 17% of total non-residential building energy per year. According to the NREL (National Renewable Energy Laboratory), the average lifecycle of a building in a university is 42 years with an EUI (energy use intensity) of 23 kWh/m^2/y. Current building and energy codes limit the EUI to 16 kWh/m^2/y for new school buildings; this benchmark can vary depending on climate, occupancy, and other contextual factors. Although the LEED (leadership in energy and environmental design) system provides a set of guidelines to rate sustainable buildings, studies have shown that 28%-35% of the educational LEED-rated buildings use more energy than their conventional counterparts. This paper examines the issues specific to a LEED-rated design addition to an existing university building. The forum, a lecture hall expansion of to an existing building at the University of Kansas, has been proposed as environmentally friendly and energy-efficient building addition. Comfort and health aspects have been considered in the design in order to obtain LEED platinum certificate. The forum's energy performance strategies include a double-skin facade to reduce energy consumption and PV (photovoltaic) panels to generate onsite energy. This study considers various scenarios to meet NZEB (net-zero energy building) criteria and maximize energy savings. The feasibility of NZE criteria is evaluated for: (a) seasonal comparison; (b) facility occupancy; (c) PV panels' addition in relation to double skin facade. The results of NZEB approach are compared to LEED platinum requirements, based on Rol (return on investment) and PV panel's efficiency for this specific educational building.
基金supported by the National High Technology Research and Development Program(Grant No.2011AA050511)Jiangsu"333"Project,the Priority Academic Program Development of Jiangsu Higher Education Institutions and Research and Innovation Project for College Graduates of Jiangsu Province(Grant No.CXLX13_722)
文摘To study the ferroelectric photovoltaic effect based on polycrystalline films, preparation of high-quality polycrystalline films with low leakage and high remnant polarization is essential. Polycrystalline BiFeO3 (BFO) thin films with extremely large remnant polarization (2Pr = 180 ~aC/cm2) were successfully deposited on glass substrates coated with indium tin oxide using a modified radio frequency magnetron sputtering method. Symmetric and asymmetric cells were constructed to investigate the ferroelectric photovoltaic effect in order to understand the relationship between polarization and photovoltaic response. All examined cells showed polarization-induced photovoltaic effect. Our findings also showed that the ferroelectric photovoltaic effect is highly dependent on the material used for the top electrode and the thickness of the polycrystalline film.