聚合的分布式能源可作为虚拟电厂(virtual power plant,VPP)在电力市场中提供辅助调频服务,来应对低碳经济下大规模可再生能源并网给电力系统稳定性带来的挑战。为了引导VPP参与调频辅助服务市场,对VPP所有者的经济激励尤为重要。研究...聚合的分布式能源可作为虚拟电厂(virtual power plant,VPP)在电力市场中提供辅助调频服务,来应对低碳经济下大规模可再生能源并网给电力系统稳定性带来的挑战。为了引导VPP参与调频辅助服务市场,对VPP所有者的经济激励尤为重要。研究了澳大利亚国家电力市场中调频辅助服务市场机制,针对配网侧聚合的住宅屋顶光伏和电池储能系统的VPP,以利润最大化为目标,提出了嵌入电池循环寿命模型的调频市场优化竞标策略和与风电合作的联合优化竞标策略。同时,根据讨价还价博弈理论,基于Nash–Harsanyi 讨价还价解提出了一种反映VPP真实价值的合作剩余分配策略。算例结果验证了所提模型和方法的有效性,研究成果为激发VPP潜在价值提供了一条途径。展开更多
The traction battery cycle life prediction method using performance degradation data was proposed. The example battery was a commercialized lithium-ion cell with LiMn2O4/Graphite cell system. The capacity faded with c...The traction battery cycle life prediction method using performance degradation data was proposed. The example battery was a commercialized lithium-ion cell with LiMn2O4/Graphite cell system. The capacity faded with cycle number follows a traction function path. Two cycle life predicting models were established. The possible cycle life was extrapolated, which follows normal distribution well. The distribution parameters were estimated and the battery reliability was evaluated. The models' precision was validated and the effect of the cycle number on the predicting precision was analysed. The cycle life models and reliability evaluation method resolved the difficulty of battery life appraisal, such as long period and high cost.展开更多
Integrating high content carbon into the negative electrodes of advanced lead–acid batteries effectively eliminates the sulfation and improves the cycle life,but brings the problem of hydrogen evolution,which increas...Integrating high content carbon into the negative electrodes of advanced lead–acid batteries effectively eliminates the sulfation and improves the cycle life,but brings the problem of hydrogen evolution,which increases inner pressure and accelerates the water loss.In this review,the mechanism of hydrogen evolution reaction in advanced lead–acid batteries,including lead–carbon battery and ultrabattery,is briefly reviewed.The strategies on suppression hydrogen evolution via structure modifications of carbon materials and adding hydrogen evolution inhibitors are summarized as well.The review points out effective ways to inhibit hydrogen evolution and prolong the cycling life of advanced lead–acid battery,especially in high-rate partial-state-of-charge applications.展开更多
Owing to their safety and low cost,magnesium ion batteries(MIBs)have attracted much attention in recent years.However,the sluggish diffusion dynamics of magnesium ions hampers the search for appropriate cathode materi...Owing to their safety and low cost,magnesium ion batteries(MIBs)have attracted much attention in recent years.However,the sluggish diffusion dynamics of magnesium ions hampers the search for appropriate cathode materials with excellent electrochemical performance.Herein,we design and synthesize a novel flexible three-dimensional-networked composite of iron vanadate nanosheet arrays/carbon cloths(3 D FeVO/CC)as a binder-free cathode for MIBs.Relative to bare FeVO nanosheets,the 3 D binder-free electrode with designed architecture enables a full range of electrochemical potential,including a high specific capacity of270 mA h g^(-1) and an increased life span(over 5000 cycles).Such achievable high-density energy originates from the synergistic optimization of electron and ion kinetics,while the durability benefits from the robust structure that prevents degradation in cycling.The single-phase reaction mechanism of FeVO in the magnesium ion storage process is also explored by in-situ X-ray diffraction and Raman technologies.Moreover,a flexible MIB pouch cell(3 D FeVO/CCIMgNaTi_(3)O_(7)) is assembled and exhibits practical application potential.This work verifies that 3 D FeVO/CC is a potential candidate cathode material that can satisfy the requirements of highperformance MIBs.It also opens a new avenue to improve the electrochemical performance of cathode materials for MIBs.展开更多
Although organic electrode materials have merits of abundant resources,diverse structures and environmental friendliness,their performance for electrochemical energy storage is far insufficient.In this work,a thiourea...Although organic electrode materials have merits of abundant resources,diverse structures and environmental friendliness,their performance for electrochemical energy storage is far insufficient.In this work,a thiourea-based polyimide/reduced graphene oxide(PNTCSA/RGO)composite was synthesized via a condensation polymerization method.As a cathode material in lithium-ion batteries,excellent performance is demonstrated with high reversible capacity(144.2 mA h g^−1),high discharge voltage(∼2.5 V),and long cycling life(over 2000 cycles at 500 mA g^−1),which are comparable to those of other well documented in organic electrodes.Encouraging electrochemical performance is also demonstrated for sodium ion batteries(a cycling life of 800 cycles at 500 mA g^−1),while poor performance is delivered in potassium ion batteries.Theoretical studies reveal that the active sites are carbonyl groups for all alkali ions but one inserted alkali metal ion is shared by two carbonyl groups from the two neighbor units.More importantly,K ions have stronger interaction with S atoms than Li/Na ions,which may lead to poor structure reversibility and account for the poor cycling performance.Our findings provide a fundamental understanding of polyimide based polymer electrodes and help to design and develop high performance organic electrode materials for alkali metal ion batteries.展开更多
Aqueous zinc ion batteries(ZIBs)show great potential in large-scale energy storage systems for their advantages of high safety,low cost,high capacity,and environmental friendliness.However,the poor performance of Zn m...Aqueous zinc ion batteries(ZIBs)show great potential in large-scale energy storage systems for their advantages of high safety,low cost,high capacity,and environmental friendliness.However,the poor performance of Zn metal anode seriously hinders the application of ZIBs.Herein,we use the zinc-ion intercalatable V_(2)O_(5)nH_(2)O(VO)as the interface modification material,for the first time,to on-site build a Zn^(2+)-conductive ZnxV_(2)O_(5)nH_(2)O(ZnVO)interfacial layer via the spontaneous short-circuit reaction between the pre-fabricated VO film and Zn metal foil.Compared with the bare Zn,the ZnVO-coated Zn anode exhibits better electrochemical performances with dendrite-free Zn deposits,lower polarization,higher coulombic efficiency over 99%after long cycles and 10 times higher cycle life,which is confirmed by constructing Zn symmetrical cell and Zn|ZnSO_(4)+Li_(2)SO_(4)|LiFePO_(4) full cell.展开更多
Tin selenides have been attracting great attention as anode materials for the state-of-the-art rechargeable sodium-ion batteries(SIBs)due to their high theoretical capacity and low cost.However,they deliver unsatisfac...Tin selenides have been attracting great attention as anode materials for the state-of-the-art rechargeable sodium-ion batteries(SIBs)due to their high theoretical capacity and low cost.However,they deliver unsatisfactory performance in practice,owing to their intrinsically low conductivity,sluggish kinetics and volume expansion during the charge-discharge process.Herein,we demonstrate the synthesis of SnSe2 nanocrystals coupled with hierarchical porous carbon(SnSe2 NCs/C)microspheres for boosting SIBs in terms of capacity,rate ability and durability.The unique structure of SnSe2 NCs/C possesses several advantages,including inhibiting the agglomeration of SnSe2 nanoparticles,relieving the volume expansion,accelerating the diffusion kinetics of electrons/ions,enhancing the contact area between the electrode and electrolyte and improving the structural stability of the composite.As a result,the as-obtained SnSe2 NCs/C microspheres show a high reversible capacity(565 mA h g^-1 after 100 cycles at 100 mA g^-1),excellent rate capability,and long cycling life stability(363 mA h g^-1 at1 A g^-1 after 1000 cycles),which represent the best performances among the reported SIBs based on SnSe2-based anode materials.展开更多
One main challenge for phosphate cathodes in sodium-ion batteries(SIBs)is to increase the working voltage and energy density to promote its practicability.Herein,an advanced Na3V2(PO4)2F3@C cathode is prepared success...One main challenge for phosphate cathodes in sodium-ion batteries(SIBs)is to increase the working voltage and energy density to promote its practicability.Herein,an advanced Na3V2(PO4)2F3@C cathode is prepared successfully for sodium-ion full cells.It is revealed that,carbon coating can not only enhance the electronic conductivity and electrode kinetics of Na3V2(PO4)2F3@C and inhibit the growth of particles(i.e.,shorten the Na^+-migration path),but also unexpectedly for the first time adjust the dis-/charging plateaux at different voltage ranges to increase the mean voltage(from 3.59 to 3.71 V)and energy density from 336.0 to 428.5 Wh kg^-1 of phosphate cathode material.As a result,when used as cathode for SIBs,the prepared Na3V2(PO4)2F3@C delivers much improved electrochemical properties in terms of larger specifc capacity(115.9 vs.93.5 mAh g^-1),more outstanding high-rate capability(e.g.,87.3 vs.60.5 mAh g^-1 at 10 C),higher energy density,and better cycling performance,compared to pristine Na3V2(PO4)2F3.Reasons for the enhanced electrochemical properties include ionicity enhancement of lattice induced by carbon coating,improved electrode kinetics and electronic conductivity,and high stability of lattice,which is elucidated clearly through the contrastive characterization and electrochemical studies.Moreover,excellent energy-storage performance in sodium-ion full cells further demonstrate the extremely high possibility of Na3V2(PO4)2F3@C cathode for practical applications.展开更多
Aqueous zinc-ion batteries(AZIBs)are promising for large-scale energy storage,but their development is plagued by inadequate cycle life.Here,for the first time,we reveal an unusual phenomenon of cathodic underpotentia...Aqueous zinc-ion batteries(AZIBs)are promising for large-scale energy storage,but their development is plagued by inadequate cycle life.Here,for the first time,we reveal an unusual phenomenon of cathodic underpotential deposition(UPD)of Zn,which is highly irreversible and considered the origin of the inferior cycling stability of AZIBs.Combining experimental and theoretical simulation approaches,we propose that the UPD process agrees with a two-dimensional nucleation and growth model,following a thermodynamically feasible mechanism.Furthermore,the universality of Zn UPD is identified in systems,including VO_(2)//Zn,TiO_(2)//Zn,and SnO_(2)//Zn.In practice,we propose and successfully implement removing cathodic Zn UPD and substantially mitigate the degradation of the battery by controlling the end-ofdischarge voltage.This work provides new insights into AZIBs degradation and brings the cathodic UPD behavior of rechargeable batteries into the limelight.展开更多
Fe2O3 has become a promising anode material in lithium-ion batteries (LIBs) in light of its low cost, high theoretical capacity (1007 mA h g^−1) and abundant reserves on the earth. Nevertheless, the practical applicat...Fe2O3 has become a promising anode material in lithium-ion batteries (LIBs) in light of its low cost, high theoretical capacity (1007 mA h g^−1) and abundant reserves on the earth. Nevertheless, the practical application of Fe2O3 as the anode material in LIBs is greatly hindered by several severe issues, such as drastic capacity falloff, short cyclic life and huge volume change during the charge/discharge process. To tackle these limitations, carbon-coated Fe2O3 (Fe2O3@MOFC) composites with a hollow sea urchin nanostructure were prepared by an effective and controllable morphology-inherited strategy. Metal-organic framework (MOF)-coated FeOOH (FeOOH@-MIL-100(Fe)) was applied as the precursor and self-sacrificial template. During annealing, the outer MOF layer protected the structure of inner Fe2O3 from collapsing and converted to a carbon coating layer in situ. When applied as anode materials in LIBs, Fe2O3@MOFC composites showed an initial discharge capacity of 1366.9 mA h g^−1 and a capacity preservation of 1551.3 mA h g^−1 after 200 cycles at a current density of 0.1 A g^−1. When increasing the current density to 1 A g^−1, a reversible and high capacity of 1208.6 mA h g^−1 was obtained. The enhanced electrochemical performance was attributed to the MOF-derived carbon coating layers and the unique hollow sea urchin nanostructures. They mitigated the effects of volume expansion, increased the lithium-ion mobility of electrode, and stabilized the as-formed solid electrolyte interphase films.展开更多
文摘聚合的分布式能源可作为虚拟电厂(virtual power plant,VPP)在电力市场中提供辅助调频服务,来应对低碳经济下大规模可再生能源并网给电力系统稳定性带来的挑战。为了引导VPP参与调频辅助服务市场,对VPP所有者的经济激励尤为重要。研究了澳大利亚国家电力市场中调频辅助服务市场机制,针对配网侧聚合的住宅屋顶光伏和电池储能系统的VPP,以利润最大化为目标,提出了嵌入电池循环寿命模型的调频市场优化竞标策略和与风电合作的联合优化竞标策略。同时,根据讨价还价博弈理论,基于Nash–Harsanyi 讨价还价解提出了一种反映VPP真实价值的合作剩余分配策略。算例结果验证了所提模型和方法的有效性,研究成果为激发VPP潜在价值提供了一条途径。
文摘The traction battery cycle life prediction method using performance degradation data was proposed. The example battery was a commercialized lithium-ion cell with LiMn2O4/Graphite cell system. The capacity faded with cycle number follows a traction function path. Two cycle life predicting models were established. The possible cycle life was extrapolated, which follows normal distribution well. The distribution parameters were estimated and the battery reliability was evaluated. The models' precision was validated and the effect of the cycle number on the predicting precision was analysed. The cycle life models and reliability evaluation method resolved the difficulty of battery life appraisal, such as long period and high cost.
基金supported by the Science and Technology Program of State Grid Corporation of Chinathe National Thousand Talents Program of China
文摘Integrating high content carbon into the negative electrodes of advanced lead–acid batteries effectively eliminates the sulfation and improves the cycle life,but brings the problem of hydrogen evolution,which increases inner pressure and accelerates the water loss.In this review,the mechanism of hydrogen evolution reaction in advanced lead–acid batteries,including lead–carbon battery and ultrabattery,is briefly reviewed.The strategies on suppression hydrogen evolution via structure modifications of carbon materials and adding hydrogen evolution inhibitors are summarized as well.The review points out effective ways to inhibit hydrogen evolution and prolong the cycling life of advanced lead–acid battery,especially in high-rate partial-state-of-charge applications.
基金supported by the National Key Research and Development Program of China(2020YFA0715000)the National Natural Science Foundation of China(51832004 and 51972259)+1 种基金the Natural Science Foundation of Hubei Province(2019CFA001)Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(XHT2020-003)。
文摘Owing to their safety and low cost,magnesium ion batteries(MIBs)have attracted much attention in recent years.However,the sluggish diffusion dynamics of magnesium ions hampers the search for appropriate cathode materials with excellent electrochemical performance.Herein,we design and synthesize a novel flexible three-dimensional-networked composite of iron vanadate nanosheet arrays/carbon cloths(3 D FeVO/CC)as a binder-free cathode for MIBs.Relative to bare FeVO nanosheets,the 3 D binder-free electrode with designed architecture enables a full range of electrochemical potential,including a high specific capacity of270 mA h g^(-1) and an increased life span(over 5000 cycles).Such achievable high-density energy originates from the synergistic optimization of electron and ion kinetics,while the durability benefits from the robust structure that prevents degradation in cycling.The single-phase reaction mechanism of FeVO in the magnesium ion storage process is also explored by in-situ X-ray diffraction and Raman technologies.Moreover,a flexible MIB pouch cell(3 D FeVO/CCIMgNaTi_(3)O_(7)) is assembled and exhibits practical application potential.This work verifies that 3 D FeVO/CC is a potential candidate cathode material that can satisfy the requirements of highperformance MIBs.It also opens a new avenue to improve the electrochemical performance of cathode materials for MIBs.
基金This work was financially supported by the National Natural Science Foundation of China(51672188 and 21703036).
文摘Although organic electrode materials have merits of abundant resources,diverse structures and environmental friendliness,their performance for electrochemical energy storage is far insufficient.In this work,a thiourea-based polyimide/reduced graphene oxide(PNTCSA/RGO)composite was synthesized via a condensation polymerization method.As a cathode material in lithium-ion batteries,excellent performance is demonstrated with high reversible capacity(144.2 mA h g^−1),high discharge voltage(∼2.5 V),and long cycling life(over 2000 cycles at 500 mA g^−1),which are comparable to those of other well documented in organic electrodes.Encouraging electrochemical performance is also demonstrated for sodium ion batteries(a cycling life of 800 cycles at 500 mA g^−1),while poor performance is delivered in potassium ion batteries.Theoretical studies reveal that the active sites are carbonyl groups for all alkali ions but one inserted alkali metal ion is shared by two carbonyl groups from the two neighbor units.More importantly,K ions have stronger interaction with S atoms than Li/Na ions,which may lead to poor structure reversibility and account for the poor cycling performance.Our findings provide a fundamental understanding of polyimide based polymer electrodes and help to design and develop high performance organic electrode materials for alkali metal ion batteries.
基金supported by the National Natural Science Foundation(51772115)the National Key Research and Development Program of China(2018YFE0206900)the Hubei Provincial Natural Science Foundation(2019CFA002)。
文摘Aqueous zinc ion batteries(ZIBs)show great potential in large-scale energy storage systems for their advantages of high safety,low cost,high capacity,and environmental friendliness.However,the poor performance of Zn metal anode seriously hinders the application of ZIBs.Herein,we use the zinc-ion intercalatable V_(2)O_(5)nH_(2)O(VO)as the interface modification material,for the first time,to on-site build a Zn^(2+)-conductive ZnxV_(2)O_(5)nH_(2)O(ZnVO)interfacial layer via the spontaneous short-circuit reaction between the pre-fabricated VO film and Zn metal foil.Compared with the bare Zn,the ZnVO-coated Zn anode exhibits better electrochemical performances with dendrite-free Zn deposits,lower polarization,higher coulombic efficiency over 99%after long cycles and 10 times higher cycle life,which is confirmed by constructing Zn symmetrical cell and Zn|ZnSO_(4)+Li_(2)SO_(4)|LiFePO_(4) full cell.
基金supported by the National Key R&D Research Program of China (2016YFB0100201)Beijing Natural Science Foundation (JQ18005)+2 种基金the National Natural Science Foundation of China (51671003, 21802003)China Postdoctoral Science Foundation (2019TQ0001)the start-up supports from Peking University and Young Thousand Talented Program
文摘Tin selenides have been attracting great attention as anode materials for the state-of-the-art rechargeable sodium-ion batteries(SIBs)due to their high theoretical capacity and low cost.However,they deliver unsatisfactory performance in practice,owing to their intrinsically low conductivity,sluggish kinetics and volume expansion during the charge-discharge process.Herein,we demonstrate the synthesis of SnSe2 nanocrystals coupled with hierarchical porous carbon(SnSe2 NCs/C)microspheres for boosting SIBs in terms of capacity,rate ability and durability.The unique structure of SnSe2 NCs/C possesses several advantages,including inhibiting the agglomeration of SnSe2 nanoparticles,relieving the volume expansion,accelerating the diffusion kinetics of electrons/ions,enhancing the contact area between the electrode and electrolyte and improving the structural stability of the composite.As a result,the as-obtained SnSe2 NCs/C microspheres show a high reversible capacity(565 mA h g^-1 after 100 cycles at 100 mA g^-1),excellent rate capability,and long cycling life stability(363 mA h g^-1 at1 A g^-1 after 1000 cycles),which represent the best performances among the reported SIBs based on SnSe2-based anode materials.
基金supported by the National Natural Science Foundation of China(91963118)the Fundamental Research Funds for the Central Universities(2412019ZD010).
文摘One main challenge for phosphate cathodes in sodium-ion batteries(SIBs)is to increase the working voltage and energy density to promote its practicability.Herein,an advanced Na3V2(PO4)2F3@C cathode is prepared successfully for sodium-ion full cells.It is revealed that,carbon coating can not only enhance the electronic conductivity and electrode kinetics of Na3V2(PO4)2F3@C and inhibit the growth of particles(i.e.,shorten the Na^+-migration path),but also unexpectedly for the first time adjust the dis-/charging plateaux at different voltage ranges to increase the mean voltage(from 3.59 to 3.71 V)and energy density from 336.0 to 428.5 Wh kg^-1 of phosphate cathode material.As a result,when used as cathode for SIBs,the prepared Na3V2(PO4)2F3@C delivers much improved electrochemical properties in terms of larger specifc capacity(115.9 vs.93.5 mAh g^-1),more outstanding high-rate capability(e.g.,87.3 vs.60.5 mAh g^-1 at 10 C),higher energy density,and better cycling performance,compared to pristine Na3V2(PO4)2F3.Reasons for the enhanced electrochemical properties include ionicity enhancement of lattice induced by carbon coating,improved electrode kinetics and electronic conductivity,and high stability of lattice,which is elucidated clearly through the contrastive characterization and electrochemical studies.Moreover,excellent energy-storage performance in sodium-ion full cells further demonstrate the extremely high possibility of Na3V2(PO4)2F3@C cathode for practical applications.
基金supported by the National Key Research and Development Program of China(2020YFA0715000 and 2016YFA0202603)the National Natural Science Foundation of China(51832004,51521001,and 22109029)。
文摘Aqueous zinc-ion batteries(AZIBs)are promising for large-scale energy storage,but their development is plagued by inadequate cycle life.Here,for the first time,we reveal an unusual phenomenon of cathodic underpotential deposition(UPD)of Zn,which is highly irreversible and considered the origin of the inferior cycling stability of AZIBs.Combining experimental and theoretical simulation approaches,we propose that the UPD process agrees with a two-dimensional nucleation and growth model,following a thermodynamically feasible mechanism.Furthermore,the universality of Zn UPD is identified in systems,including VO_(2)//Zn,TiO_(2)//Zn,and SnO_(2)//Zn.In practice,we propose and successfully implement removing cathodic Zn UPD and substantially mitigate the degradation of the battery by controlling the end-ofdischarge voltage.This work provides new insights into AZIBs degradation and brings the cathodic UPD behavior of rechargeable batteries into the limelight.
基金financially supported by the National Key R&D Program of China (2017YFA0403402 and 2019YFA0405601)the National Natural Science Foundation of China(21773222,U1732272 and U1932214)the DNL Cooperation Fund,and Chinese Academy of Sciences (DNL180201)
文摘Fe2O3 has become a promising anode material in lithium-ion batteries (LIBs) in light of its low cost, high theoretical capacity (1007 mA h g^−1) and abundant reserves on the earth. Nevertheless, the practical application of Fe2O3 as the anode material in LIBs is greatly hindered by several severe issues, such as drastic capacity falloff, short cyclic life and huge volume change during the charge/discharge process. To tackle these limitations, carbon-coated Fe2O3 (Fe2O3@MOFC) composites with a hollow sea urchin nanostructure were prepared by an effective and controllable morphology-inherited strategy. Metal-organic framework (MOF)-coated FeOOH (FeOOH@-MIL-100(Fe)) was applied as the precursor and self-sacrificial template. During annealing, the outer MOF layer protected the structure of inner Fe2O3 from collapsing and converted to a carbon coating layer in situ. When applied as anode materials in LIBs, Fe2O3@MOFC composites showed an initial discharge capacity of 1366.9 mA h g^−1 and a capacity preservation of 1551.3 mA h g^−1 after 200 cycles at a current density of 0.1 A g^−1. When increasing the current density to 1 A g^−1, a reversible and high capacity of 1208.6 mA h g^−1 was obtained. The enhanced electrochemical performance was attributed to the MOF-derived carbon coating layers and the unique hollow sea urchin nanostructures. They mitigated the effects of volume expansion, increased the lithium-ion mobility of electrode, and stabilized the as-formed solid electrolyte interphase films.