The time-frequency domain electromagnetic(TFEM)sounding technique can directly detect oil and gas characteristics through anomalies in resistivity and polarizability.In recent years,it has made some breakthroughs in h...The time-frequency domain electromagnetic(TFEM)sounding technique can directly detect oil and gas characteristics through anomalies in resistivity and polarizability.In recent years,it has made some breakthroughs in hydrocarbon detection.TFEM was applied to predict the petroliferous property of the Ili Basin.In accordance with the geological structure characteristics of the study area,a two-dimensional layered medium model was constructed and forward modeling was performed.We used the forward-modeling results to guide fi eld construction and ensure the quality of the fi eld data collection.We used the model inversion results to identify and distinguish the resolution of the geoelectric information and provide a reliable basis for data processing.On the basis of our results,key technologies such as 2D resistivity tomography imaging inversion and polarimetric constrained inversion were developed,and we obtained abundant geological and geophysical information.The characteristics of the TFEM anomalies of the hydrocarbon reservoirs in the Ili Basin were summarized through an analysis of the electrical logging data in the study area.Moreover,the oil-gas properties of the Permian and Triassic layers were predicted,and the next favorable exploration targets were optimized.展开更多
This paper presents an approach for shunt faults detection and classification in transmission line using Support Vector Machine (SVM). The paper compares between using three line post-fault current samples for one-h...This paper presents an approach for shunt faults detection and classification in transmission line using Support Vector Machine (SVM). The paper compares between using three line post-fault current samples for one-half cycle and one-fourth cycle from the inception of the fault as inputs for SVM. Two SVMs are used, first SVMabc is used for faulty phase detection and second SVMg is used for ground detection. SVMs with polynomial kernel with different degrees are used to obtain the best classification score. The classification test results show that the proposed method is accurate and reliable.展开更多
基金This work was supported by the Geology and Mineral Resources Investigation and Evaluation Program(No.12120115006601 and No.DD20160181)the National key Research and Development projects(No.2016YFC060110204 and No.2016YFC060110305).
文摘The time-frequency domain electromagnetic(TFEM)sounding technique can directly detect oil and gas characteristics through anomalies in resistivity and polarizability.In recent years,it has made some breakthroughs in hydrocarbon detection.TFEM was applied to predict the petroliferous property of the Ili Basin.In accordance with the geological structure characteristics of the study area,a two-dimensional layered medium model was constructed and forward modeling was performed.We used the forward-modeling results to guide fi eld construction and ensure the quality of the fi eld data collection.We used the model inversion results to identify and distinguish the resolution of the geoelectric information and provide a reliable basis for data processing.On the basis of our results,key technologies such as 2D resistivity tomography imaging inversion and polarimetric constrained inversion were developed,and we obtained abundant geological and geophysical information.The characteristics of the TFEM anomalies of the hydrocarbon reservoirs in the Ili Basin were summarized through an analysis of the electrical logging data in the study area.Moreover,the oil-gas properties of the Permian and Triassic layers were predicted,and the next favorable exploration targets were optimized.
文摘This paper presents an approach for shunt faults detection and classification in transmission line using Support Vector Machine (SVM). The paper compares between using three line post-fault current samples for one-half cycle and one-fourth cycle from the inception of the fault as inputs for SVM. Two SVMs are used, first SVMabc is used for faulty phase detection and second SVMg is used for ground detection. SVMs with polynomial kernel with different degrees are used to obtain the best classification score. The classification test results show that the proposed method is accurate and reliable.