The effectiveness of optimizing electrical conductivity of carbon fiber/carbon nanotube (CNT)/epoxy hybrid composites via Taguchi method was demonstrated. CNTs were induced on carbon fabric by electrophoretic deposi...The effectiveness of optimizing electrical conductivity of carbon fiber/carbon nanotube (CNT)/epoxy hybrid composites via Taguchi method was demonstrated. CNTs were induced on carbon fabric by electrophoretic deposition (EPD) technique. The essential deposition parameters were identified as l) the deposition time, 2) the deposition voltage, 3) the mass fraction of CNTs in suspension, and 4) the distance between the electrodes. An experimental design was then performed to establish the appropriate levels for each factor. An orthogonal array of L9 (34) was designed to conduct the experiments. Electrical conductivity results were collected as the response. The relative influences of design parameters on the response were discussed. Using the model, signal to noise (S/N) ratio and response characteristics for the optimized deposition parameter combination were predicted. The results show clearly that the optimum condition of electrophoretic deposition (EPD) process improves the electrical conductivity of carbon/epoxy hybrid composites.展开更多
基金Project supported by the Second Stage of Brain Korea 21 Projects and the National Research Foundation of Korea (2011-0030804) Funded by the Korea Government (MEST)
文摘The effectiveness of optimizing electrical conductivity of carbon fiber/carbon nanotube (CNT)/epoxy hybrid composites via Taguchi method was demonstrated. CNTs were induced on carbon fabric by electrophoretic deposition (EPD) technique. The essential deposition parameters were identified as l) the deposition time, 2) the deposition voltage, 3) the mass fraction of CNTs in suspension, and 4) the distance between the electrodes. An experimental design was then performed to establish the appropriate levels for each factor. An orthogonal array of L9 (34) was designed to conduct the experiments. Electrical conductivity results were collected as the response. The relative influences of design parameters on the response were discussed. Using the model, signal to noise (S/N) ratio and response characteristics for the optimized deposition parameter combination were predicted. The results show clearly that the optimum condition of electrophoretic deposition (EPD) process improves the electrical conductivity of carbon/epoxy hybrid composites.