The exothermic efficiency of microwave heating an electrolyte/water solution is remarkably high due to the dielectric heating by orientation polarization of water and resistance heating by the Joule process occurred s...The exothermic efficiency of microwave heating an electrolyte/water solution is remarkably high due to the dielectric heating by orientation polarization of water and resistance heating by the Joule process occurred simultaneously compared with pure water.A three-dimensional finite element numerical model of multi-feed microwave heating industrial liquids continuously flowing in a meter-scale circular tube is presented.The temperature field inside the applicator tube in the cavity is solved by COMSOL Multiphysics and professional programming to describe the momentum,energy and Maxwell's equations.The evaluations of the electromagnetic field,the temperature distribution and the velocity field are simulated for the fluids dynamically heated by singleand multi-feed microwave system,respectively.Both the pilot experimental investigations and numerical results of microwave with single-feed heating for fluids with different effective permittivity and flow rates show that the presented numerical modeling makes it possible to analyze dynamic process of multi-feed microwave heating the industrial liquid.The study aids in enhancing the understanding and optimizing of dynamic process in the use of multi-feed microwave heating industrial continuous flow for a variety of material properties and technical parameters.展开更多
This study proposes a new approach in which an impermeable plate is placed under the pipeline to prevent the local scour around the pipeline.In order to understand the performance of this approach,the finite volume me...This study proposes a new approach in which an impermeable plate is placed under the pipeline to prevent the local scour around the pipeline.In order to understand the performance of this approach,the finite volume method(FVM) and volume of fluid(VOF) method are adopted to simulate the flow field around the pipeline.The pressure distribution along the sandy bed surface is obtained by considering the variation of water surface.Furthermore,the effects of water depth,unidirectional and bidirectional impermeable plates on pressure difference are discussed.The seepage flow field of sandy bed near underwater pipeline is numerically simulated using the laminar and porous media model.On this basis,the effect of the impermeable plate length on hydraulic gradient is investigated and the critical length of impermeable plate is obtained.The simulated results show that when the water depth is smaller than 5.00D(D is the diameter of pipeline),the effect of the water depth on the pressure difference is remarkable.The pressure differences between two endpoints of both the unidirectional and bidirectional plates decrease with the increase of the plate length.The variations of the pressure differences for both the unidirectional and bidirectional plates are similar.With the increase of plate length,the hydraulic gradient decreases and the piping at the seepage exit is avoided effectively as long as it reaches a certain length.Such a critical length of the plate decreases with the increase of the water depth.When water depth is larger than 4.00D,the effect of the water depth on the critical length is small.For the same water depth,the critical length of impermeable plate increases with the increase of the dimensionless flow parameter.Numerical simulation results are in good agreement with the available experimental measurements.展开更多
基金Project(KKSY201503006)supported by Scientific Research Foundation of Kunming University of Science and Technology,ChinaProject(2014FD009)supported by the Applied Basic Research Foundation(Youth Program)of ChinaProject(51090385)supported by the National Natural Science Foundation of China
文摘The exothermic efficiency of microwave heating an electrolyte/water solution is remarkably high due to the dielectric heating by orientation polarization of water and resistance heating by the Joule process occurred simultaneously compared with pure water.A three-dimensional finite element numerical model of multi-feed microwave heating industrial liquids continuously flowing in a meter-scale circular tube is presented.The temperature field inside the applicator tube in the cavity is solved by COMSOL Multiphysics and professional programming to describe the momentum,energy and Maxwell's equations.The evaluations of the electromagnetic field,the temperature distribution and the velocity field are simulated for the fluids dynamically heated by singleand multi-feed microwave system,respectively.Both the pilot experimental investigations and numerical results of microwave with single-feed heating for fluids with different effective permittivity and flow rates show that the presented numerical modeling makes it possible to analyze dynamic process of multi-feed microwave heating the industrial liquid.The study aids in enhancing the understanding and optimizing of dynamic process in the use of multi-feed microwave heating industrial continuous flow for a variety of material properties and technical parameters.
基金supported by the National Natural Science Foundation of China(Grant No.51279189)the National Hi-Tech Research and Development Program of China("863"Project)(Grant No.2008AA09Z309)China Scholarship Council and University of Aberdeen
文摘This study proposes a new approach in which an impermeable plate is placed under the pipeline to prevent the local scour around the pipeline.In order to understand the performance of this approach,the finite volume method(FVM) and volume of fluid(VOF) method are adopted to simulate the flow field around the pipeline.The pressure distribution along the sandy bed surface is obtained by considering the variation of water surface.Furthermore,the effects of water depth,unidirectional and bidirectional impermeable plates on pressure difference are discussed.The seepage flow field of sandy bed near underwater pipeline is numerically simulated using the laminar and porous media model.On this basis,the effect of the impermeable plate length on hydraulic gradient is investigated and the critical length of impermeable plate is obtained.The simulated results show that when the water depth is smaller than 5.00D(D is the diameter of pipeline),the effect of the water depth on the pressure difference is remarkable.The pressure differences between two endpoints of both the unidirectional and bidirectional plates decrease with the increase of the plate length.The variations of the pressure differences for both the unidirectional and bidirectional plates are similar.With the increase of plate length,the hydraulic gradient decreases and the piping at the seepage exit is avoided effectively as long as it reaches a certain length.Such a critical length of the plate decreases with the increase of the water depth.When water depth is larger than 4.00D,the effect of the water depth on the critical length is small.For the same water depth,the critical length of impermeable plate increases with the increase of the dimensionless flow parameter.Numerical simulation results are in good agreement with the available experimental measurements.