The reflecting and transmitting effects of a planar unidirectionally conducting screen are analyzed based on the accurate closed-form expression for electric field of an arbitrarily oriented electric dipole.For a dipo...The reflecting and transmitting effects of a planar unidirectionally conducting screen are analyzed based on the accurate closed-form expression for electric field of an arbitrarily oriented electric dipole.For a dipole oriented along the wire elements of the screen,the screen acts as a perfectly electrically conducting plane.For a dipole perpendicular to the wire elements,the fields reflected by the screen can be interpreted as the contribution of an image dipole and image transmission-line current source,while the transmitted field is arisen from image transmission-line source.The expressions of related surface waves are derived and can be compared with previous results.展开更多
Electrical capacitance tomography(ECT) is a non-invasive imaging technique that aims at visualizing the cross-sectional permittivity distribution and phase distribution of solid/gas two-phase flow based on the measure...Electrical capacitance tomography(ECT) is a non-invasive imaging technique that aims at visualizing the cross-sectional permittivity distribution and phase distribution of solid/gas two-phase flow based on the measured capacitance.To solve the nonlinear and ill-posed inverse problem:image reconstruction of ECT system,this paper proposed a new image reconstruction method based on improved radial basis function(RBF) neural network combined with adaptive wavelet image enhancement.Firstly,an improved RBF network was applied to establish the mapping model between the reconstruction image pixels and the capacitance values measured.Then,for better image quality,adaptive wavelet image enhancement technique was emphatically analyzed and studied,which belongs to a space-frequency analysis method and is suitable for image feature-enhanced.Through multi-level wavelet decomposition,edge points of the image produced from RBF network can be determined based on the neighborhood property of each sub-band;noise distribution in the space-frequency domain can be estimated based on statistical characteristics;after that a self-adaptive edge enhancement gain can be constructed.Finally,the image is reconstructed with adjusting wavelet coefficients.In this paper,a 12-electrode ECT system and a pneumatic conveying platform were built up to verify this image reconstruction algorithm.Experimental results demonstrated that adaptive wavelet image enhancement technique effectively implemented edge detection and image enhancement,and the improved RBF network and adaptive wavelet image enhancement hybrid algorithm greatly improved the quality of reconstructed image of solid/gas two-phase flow [pulverized coal(PC)/air].展开更多
This paper focuses on flow structures of the wing-wake interaction between the hind wing and the wake of the forewing in hovering flight of a dragonfly since there are arguments whether the wing-wake interaction is us...This paper focuses on flow structures of the wing-wake interaction between the hind wing and the wake of the forewing in hovering flight of a dragonfly since there are arguments whether the wing-wake interaction is useful or not.A mechanical flapping model with two tandem wings is used to study the interaction.In the device,two identical simplified model wings are mounted to the flapping model and they are both scaled up to keep the Reynolds number similar to those of dragonfly in hovering flight since our experiment is conducted in a water tank.The kinetic pattern of dragonfly(Aeschna juncea) is chosen because of its special interesting asymmetry.A multi-slice phase-locked stereo particle image velocimetry(PIV) system is used to record flow structures around the hind wing at the mid downstroke(t/T=0.25) and the mid upstroke(t/T=0.75).To make comparison of the flow field between with and without the influence of the wake,flow structures around a single flapping wing(hind wing without the existence of the forewing) at these two stroke phases are also recorded.A local vortex identification scheme called swirling strength is applied to determine the vortices around the wing and they are visualized with the iso-surface of swirling strength.This paper also presents contour lines of z at each spanwise position of the hind wing,the vortex core position of the leading edge vortex(LEV) of hind wing with respect to the upper surface of hind wing,the circulation of the hind wing LEV at each spanwise position and so on.Experimental results show that dimension and strength of the hind wing LEV are impaired at the mid stroke in comparison with the single wing LEV because of the downwash from the forewing.Our results also reveal that a wake vortex from the forewing traverses the upper surface of the hind wing at the mid downstroke and its distance to the upper surface is about 40% of the wing chord length.At the instant,the distance of the hind wing LEV to the upper surface is about 20% of the wing chord length.Thus,there must be a wing-wake interaction mechanism that makes the wake vortex become an additional LEV of the hind wing and it can partly compensate the hind wing for its lift loss caused by the downwash from the forewing.展开更多
The paper investigates the dynamics of a new multiple bipolar multiple Dielectric Barrier Discharges(DBD)actuator using in large-scale flow control.Particle image velocimetry experiments are performed to characteristi...The paper investigates the dynamics of a new multiple bipolar multiple Dielectric Barrier Discharges(DBD)actuator using in large-scale flow control.Particle image velocimetry experiments are performed to characteristic the effectiveness of the multiple bipolar DBD plasma actuator.The results show that the mutual interaction between the electrodes,one major disadvantage of traditional DBD characterized by reverse discharge can be entirely avoided,and a constantly accelerating electric wind velocity can be obtained by using the new multiple bipolar DBD plasma actuator.展开更多
This paper presents an experimental investigation on flow field induced by a dielectric barrier discharge(DBD) plasma actuator with serrated electrodes in still air to further improve its flow control effectiveness. F...This paper presents an experimental investigation on flow field induced by a dielectric barrier discharge(DBD) plasma actuator with serrated electrodes in still air to further improve its flow control effectiveness. For comparison, the actuator with widely used linear electrodes was also studied. Experiments were carried out using 2D particle image velocimetry. Particular attention was given to the flow topology, discharge phenomenon, and vortex formation mechanism. Results showed that a 2D wall jet was induced by the linear actuators, whereas the plasma actuators with serrated electrode introduced a series of streamwise vorticities, which might benefit flow control(e.g., enhancing the momentum transport in the separated boundary flow). In addition, the mechanism of 3D flow topology induced by the serrated DBD actuator was analyzed in detail.展开更多
文摘The reflecting and transmitting effects of a planar unidirectionally conducting screen are analyzed based on the accurate closed-form expression for electric field of an arbitrarily oriented electric dipole.For a dipole oriented along the wire elements of the screen,the screen acts as a perfectly electrically conducting plane.For a dipole perpendicular to the wire elements,the fields reflected by the screen can be interpreted as the contribution of an image dipole and image transmission-line current source,while the transmitted field is arisen from image transmission-line source.The expressions of related surface waves are derived and can be compared with previous results.
基金Supported by the National Natural Science Foundation of China (50777049,51177120)the National High Technology Research and Development Program of China (2009AA04Z130)the RCUK’s Energy Programme (EP/F061307/1)
文摘Electrical capacitance tomography(ECT) is a non-invasive imaging technique that aims at visualizing the cross-sectional permittivity distribution and phase distribution of solid/gas two-phase flow based on the measured capacitance.To solve the nonlinear and ill-posed inverse problem:image reconstruction of ECT system,this paper proposed a new image reconstruction method based on improved radial basis function(RBF) neural network combined with adaptive wavelet image enhancement.Firstly,an improved RBF network was applied to establish the mapping model between the reconstruction image pixels and the capacitance values measured.Then,for better image quality,adaptive wavelet image enhancement technique was emphatically analyzed and studied,which belongs to a space-frequency analysis method and is suitable for image feature-enhanced.Through multi-level wavelet decomposition,edge points of the image produced from RBF network can be determined based on the neighborhood property of each sub-band;noise distribution in the space-frequency domain can be estimated based on statistical characteristics;after that a self-adaptive edge enhancement gain can be constructed.Finally,the image is reconstructed with adjusting wavelet coefficients.In this paper,a 12-electrode ECT system and a pneumatic conveying platform were built up to verify this image reconstruction algorithm.Experimental results demonstrated that adaptive wavelet image enhancement technique effectively implemented edge detection and image enhancement,and the improved RBF network and adaptive wavelet image enhancement hybrid algorithm greatly improved the quality of reconstructed image of solid/gas two-phase flow [pulverized coal(PC)/air].
基金supported by the National Natural Science Foundation of China (Grant Nos. 10772017,10472011)
文摘This paper focuses on flow structures of the wing-wake interaction between the hind wing and the wake of the forewing in hovering flight of a dragonfly since there are arguments whether the wing-wake interaction is useful or not.A mechanical flapping model with two tandem wings is used to study the interaction.In the device,two identical simplified model wings are mounted to the flapping model and they are both scaled up to keep the Reynolds number similar to those of dragonfly in hovering flight since our experiment is conducted in a water tank.The kinetic pattern of dragonfly(Aeschna juncea) is chosen because of its special interesting asymmetry.A multi-slice phase-locked stereo particle image velocimetry(PIV) system is used to record flow structures around the hind wing at the mid downstroke(t/T=0.25) and the mid upstroke(t/T=0.75).To make comparison of the flow field between with and without the influence of the wake,flow structures around a single flapping wing(hind wing without the existence of the forewing) at these two stroke phases are also recorded.A local vortex identification scheme called swirling strength is applied to determine the vortices around the wing and they are visualized with the iso-surface of swirling strength.This paper also presents contour lines of z at each spanwise position of the hind wing,the vortex core position of the leading edge vortex(LEV) of hind wing with respect to the upper surface of hind wing,the circulation of the hind wing LEV at each spanwise position and so on.Experimental results show that dimension and strength of the hind wing LEV are impaired at the mid stroke in comparison with the single wing LEV because of the downwash from the forewing.Our results also reveal that a wake vortex from the forewing traverses the upper surface of the hind wing at the mid downstroke and its distance to the upper surface is about 40% of the wing chord length.At the instant,the distance of the hind wing LEV to the upper surface is about 20% of the wing chord length.Thus,there must be a wing-wake interaction mechanism that makes the wake vortex become an additional LEV of the hind wing and it can partly compensate the hind wing for its lift loss caused by the downwash from the forewing.
文摘The paper investigates the dynamics of a new multiple bipolar multiple Dielectric Barrier Discharges(DBD)actuator using in large-scale flow control.Particle image velocimetry experiments are performed to characteristic the effectiveness of the multiple bipolar DBD plasma actuator.The results show that the mutual interaction between the electrodes,one major disadvantage of traditional DBD characterized by reverse discharge can be entirely avoided,and a constantly accelerating electric wind velocity can be obtained by using the new multiple bipolar DBD plasma actuator.
基金supported by the National Natural Science Foundation of China (51222606)
文摘This paper presents an experimental investigation on flow field induced by a dielectric barrier discharge(DBD) plasma actuator with serrated electrodes in still air to further improve its flow control effectiveness. For comparison, the actuator with widely used linear electrodes was also studied. Experiments were carried out using 2D particle image velocimetry. Particular attention was given to the flow topology, discharge phenomenon, and vortex formation mechanism. Results showed that a 2D wall jet was induced by the linear actuators, whereas the plasma actuators with serrated electrode introduced a series of streamwise vorticities, which might benefit flow control(e.g., enhancing the momentum transport in the separated boundary flow). In addition, the mechanism of 3D flow topology induced by the serrated DBD actuator was analyzed in detail.