In view of the current sensors failure in electric pitch system,a variable universe fuzzy fault tolerant control method of electric pitch control system based on single current detection is proposed.When there is sing...In view of the current sensors failure in electric pitch system,a variable universe fuzzy fault tolerant control method of electric pitch control system based on single current detection is proposed.When there is single or two-current sensor fault occurs,based on the proposed method the missing current information can be reconstructed by using direct current(DC)bus current sensor and the three-phase current can be updated in time within any two adjacent sampling periods,so as to ensure stability of the closed-loop system.And then the switchover and fault tolerant control of fault current sensor would be accomplished by fault diagnosis method based on adaptive threshold judgment.For the reconstructed signal error caused by the modulation method and the main control target of electric pitch system,a variable universe fuzzy control method is used in the speed loop,which can improve the anti-disturbance ability to load variation,and the robustness of fault tolerance system.The results show that the fault tolerant control method makes the variable pitch control system still has ideal control characteristics in case of sensor failure although part of the system performance is lost,thus the correctness of the proposed method is verified.展开更多
This paper summarizes some of the typical riser vortex-induced vibration (VIV) problems in subsea oil and gas developments, and presents the corresponding computational fluid dynamics (CFD) time domain simula- tio...This paper summarizes some of the typical riser vortex-induced vibration (VIV) problems in subsea oil and gas developments, and presents the corresponding computational fluid dynamics (CFD) time domain simula- tion results to address these problems. First, the CFD time domain simulation approach was applied to analyze the wake field behind a stationary cylinder and a vibrating cylinder. Then a vertical riser VIV response under uniform current was studied. The VIV response time histories revealed some valuable clues that could lead to explanation of the higher harmonics. After that, a vertical riser VIV response under shear current was investigated. A 3 000 ft (1 ft=-0.304 8 m) water depth top tensioned riser was sized, and its VIV responses under uniform and shear current were studied. Then this paper continues to discuss one catenary flexible riser VIV response during normal lay. Last, the time domain simulation approach was applied to a partially submerged flexible jumper, to study the jumper VIV behavior, and dynamic motion envelopes. It was demonstrated that the time domain simulation ap- proach is able to disclose details of the flow field, vortex shedding pattern, and riser dynamic behavior, and han- dle different tvoes of risers under different Woe of currents.展开更多
Based on an analytical solution for the current point source in an anisotropic half-space,we study the apparent resistivity and apparent chargeability of a transversely isotropic medium with vertical and horizontal ax...Based on an analytical solution for the current point source in an anisotropic half-space,we study the apparent resistivity and apparent chargeability of a transversely isotropic medium with vertical and horizontal axes symmetry,respectively.We then provide a simple derivation of the anisotropy paradoxes in direct current resistivity and time-domain induced polarization methods.Analogous to the mean resistivity,we propose a formulation for deriving the mean polarizability.We also present a three-dimensional finite element algorithm for modeling the direct current resistivity and time-domain induced polarization using an unstructured tetrahedral grid.Finally,we provide the apparent resistivity and apparent chargeability curves of a tilted,transversely isotropic medium with diff erent angles,respectively.The subsequent results illustrate the anisotropy paradoxes of direct current resistivity and time-domain induced polarization.展开更多
Aluminum (AI), Vanadium (V), Chromium (Cr), Manganese (Mn), Iron (Fe), Strontium (Sr), Molybdenum (Mo), Silver (Ag), Cadmium (Cd), Tin (Sn), Caesium (Cs), Barium (Ba), Lead (Pb), Bismuth (Bi...Aluminum (AI), Vanadium (V), Chromium (Cr), Manganese (Mn), Iron (Fe), Strontium (Sr), Molybdenum (Mo), Silver (Ag), Cadmium (Cd), Tin (Sn), Caesium (Cs), Barium (Ba), Lead (Pb), Bismuth (Bi) and Uranium (U) concentrations were investigated in water samples from fifteen sampling locations in Naviundu river basin, Luano and Ruashi rivers and Luwowoshi spring in Lubumbashi city during February, March and April 2016. Chemical analyses of the samples were carried out using Inductively Coupled Plasma-Mass Spectrometer. Water pH was determined using a pH-meter and mean pH values ranged from 4.2 to 5.8. The highest mean levels of Al (5,961.954 μg·L^-1), Pb (472.287 μg·L^-1), V (21.014 μg·L^-1), Cr (8.185μg·L^-1), U (4.163μg·L^-1) and Bi (0.012 μg·L^-1) were recorded in Chemaf (Chemicals of Africa) hydrometallurgical plant effluent, those of Mn (29,714.593 μg·L^-1), Sr (374.377μg·L^-1), Cd (11.358μg·L^-1) and Cs (0.107μg·L^-1) in Naviundu river at Cimenkat (Katanga's Cement Factory) exit, those of Fe (14,258.9 μg·L^-1) and Ba (307.641μg·L^-1) in Luano river and those of Ag (2.669 μg·L^-1), Mo (0.559 μg·L^-1) and Sn (0.325 μg·L^-1) were respectively noted in Foire channel, Naviundu river under bridge on Kasenga road and Kalulako river. The concentrations of Cd in Naviundu river at Cimenkat exit (11.358 μg·L^-1), Chemaf bydrometallurgical plant effluent (9.697μg·L^-1), Naviundu river under bridge on De Plaines Avenue (6.95 μg·L^-1) and Kalulako river (3.229 μg·L^-1), Pb concentrations in Chemaf hydrometallurgical plant effluent (472.287 μg·L^-1) as well as the AI, Fe and Mn concentrations recorded in most waters in this study exceeded the WHO (World Health Organization) maximum permissible limits for drinking water. The metal contamination of waters of the studied rivers, channel and spring might be partially attributed to natural processes, unplanned urbanization and poor waste management, and mostly to abandoned and ongoing mining and ore processing activities in Lubumbashi city.展开更多
Both winter DJF (December, January, February) months and DJF season means long-term data series of 50 regulated rivers discharges rates and the NAO indices were analyzed for different spans. This study is dictated ...Both winter DJF (December, January, February) months and DJF season means long-term data series of 50 regulated rivers discharges rates and the NAO indices were analyzed for different spans. This study is dictated for: (1) detecting the exclusive impacts of the positive phases of NAO indices on rivers discharges rates by estimating the Linear Correlation Coefficient; (2) modeling the interrelations between the discharges rates and NAO indices by estimating the Linear Regression Models, both for manifesting the impact of the positive phase of NAO index; (3) estimating the Linear Trend Coefficient in the discharge series, for manifesting the contribution of the positive phase of NAO index. Discharge rates are mainly influenced by the two mechanisms: the positive phase of NAO index and the environmental conditions in specific catchments, that is where, the positive phase of the NAO index manifest its impact on the related rivers discharges and its contribution in the related configured trends. The discharges fluctuations patterns show some increase in the discharges values have been occurred in regions around the Northern Baltic Proper as well as in Southern Finland and Sweden. The rivers such as Lagan, Nissan, Helgean, Venta, Pamu, Porvoonjoki, Lapuanjoki, Oulujoki, Kyronjoki, Wisla, Eurajoki, Odra, Lielupe, Gota alv, Motala strom, Nykopingsan, Vuoksi, Kalajoki and Simojoki haven not linear discharges changes registered depending on the specificity of the environmental conditions at the catchments areas for those rivers. The positive phase of NAO index has a linear relation with impacted river discharge.展开更多
Most of the hydropower projects in Southwest China and the adjacent foreign regions will be put into operation between 2015 and 2020, which will bring some difficulties for reasonable accommodation and delivery of ele...Most of the hydropower projects in Southwest China and the adjacent foreign regions will be put into operation between 2015 and 2020, which will bring some difficulties for reasonable accommodation and delivery of electric energy. In this paper the author studies the development scale, development schedule, accommodation and transmission schemes of the cascade hydropower stations along the Lancang River basin, one of the five large basins in China, based on the load characteristics of grids at both the sending end and the receiving end, the strategy of complementary utilization of thermal power and hydropower, the advanced transmission technologies, and the optimal economic performance. The study results show that, the cascade hydropower stations on the upper reaches of the Lancang River in Yunnan should mainly serve Guangdong Province, with proper planning of partly serving Yunnan Province during dry seasons. The transmission schemes should adopt UHVDC, UHVAC, and single-tower double-circuited HVDC transmission scheme according to the transmission capacity and distance.展开更多
Concentrations of fifteen trace metals including Aluminum (Al), Vanadium (V), Chromium (Cr), Manganese (Mn), Iron (Fe), Strontium (Sr), Molybdenum (Mo), Silver (Ag), Cadmium (Cd), Tin (Sn), Caesium...Concentrations of fifteen trace metals including Aluminum (Al), Vanadium (V), Chromium (Cr), Manganese (Mn), Iron (Fe), Strontium (Sr), Molybdenum (Mo), Silver (Ag), Cadmium (Cd), Tin (Sn), Caesium (Cs), Barium (Ba), Lead (Pb), Bismuth (Bi) and Uranium (U) were investigated in water samples collected from sixteen sampling locations in the Lubumbashi river basin and five locations in Kafubu, Kimilolo and Kinkalabwamba rivers during February, March and April 2016. Chemical analyses of the samples were carried out using ICP-MS (Inductively Coupled Plasma-Mass Spectrometer). Water pH was determined using a pH-meter and pH values ranged from 4.2 to 7.8. The highest mean trace metal levels of water were 5,515.816 )μg·L^-1, 166.925μg·L^-1, 3.898μg·L^-1 and 1.879μg·L^-1 for Al, Ba, Cr and U, respectively in Kashobwe river, 2,419.522 μg·L^-1 and 17.994 μg·L^-1 for Fe and Cd, respectively in Kafubu river at its confluence with Lubumbashi rivers, 1,408.136μg·L^-1 for Mn in Kafubu river 1.36 kilometer downward its confluence with Naviundu river, 222.406 μg·L^-1 and 0.092 μg·L^-1 for Sr and Cs, respectively in Kamalondo river 60 meters from the GCM-Lubumbashi (General of Quarries and Mines-Lubumbashi) smelter, 140.294μg·L^-1, 12.063 μg·L^-1 and 0.008μg·L^-1 for Pb, V and Bi, respectively in Munua river, 3.544 μg·L^-1 for Ag in Kabulameshi river, 1.49 μg·L^-1 for Mo in Kafubu river and 0.081μg·L^-1 for Sn in Tshondo river. The mean concentrations of Al, Cd, Fe, Mn and Pb in water of many rivers and the channel exceeded the maximum admissible limits of the WHO (World Health Organization), USEPA (United States Environmental Protection Agency) and EU (European Union) drinking-water standards. Trace metal contamination of water of the studied rivers, channel and springs might be partially attributed to natural processes, unplanned urbanization, poor waste management and mostly to abandoned and ongoing mining and ore processing activities in Lubumbashi city.展开更多
Small hydropower plants for electricity generation were first built in Spain in the early 1880s. The Spanish peninsula is characterized by its rugged landscape, fast flowing rivers and steep gradients. A clear example...Small hydropower plants for electricity generation were first built in Spain in the early 1880s. The Spanish peninsula is characterized by its rugged landscape, fast flowing rivers and steep gradients. A clear example of this is the remarkable area of the upper Ebro river basin where powerful water flows are found that are ideal for electricity generation. Between 1900 and 1930, the river Ebro was a major source of energy for industrial areas such as Alava, Vizcaya, Vitoria, Miranda de Ebro, Burgos and La Rioja. Between 1951-1965, the use of these small hydropower plants declined due to the construction of alternatives by industrialists in the Basque Country, which in most cases led to their deterioration. They were rescued in the late twentieth century, thanks to private sector initiatives which funded their rehabilitation. This study examines two small-scale hydraulic power plants in the province of Burgos at Medina de Pomar and at Quintanilla Escalada; both buildings were used for generating electricity and had living quarters for the workers and now represent historic architectonic and industrial heritage. The study documents their architectonic features and the restoration processes that have permitted one of them to remain in operation up until the present day.展开更多
This paper summarizes the development of hydro-projects in China,blended with an international perspective.It expounds major technical progress toward ensuring the safe construction of high dams and river harnessing,a...This paper summarizes the development of hydro-projects in China,blended with an international perspective.It expounds major technical progress toward ensuring the safe construction of high dams and river harnessing,and covers the theorization of uneven non-equilibrium sediment transport,inter-basin water diversion,giant hydro-generator units,pumped storage power stations,underground caverns,ecological protection,and so on.展开更多
The u Mhlatuzana, u Mbilo and a Manzimnyama river catchments located on the eastern seaboard of the Kwa Zulu-Natal province, South Africa, form the core of urbanization and industrialization, contributing the only nat...The u Mhlatuzana, u Mbilo and a Manzimnyama river catchments located on the eastern seaboard of the Kwa Zulu-Natal province, South Africa, form the core of urbanization and industrialization, contributing the only natural freshwater inflows to the Bayhead Canal portion of the Durban Harbour. In this study, seasonal discharges and physico–chemical water properties were used to quantitatively determine the material mass transport capacity of the river systems on the basis of hydrographic inputs and chemical loading from the surrounding land use sectors.The mass transport of the total dissolved solids(TDS),ammonia(NH_4), phosphorous(P), aluminum(Al), calcium(Ca), copper(Cu), chromium(Cr), mercury(Hg), potassium(K), magnesium(Mg), sodium(Na), nickel(Ni), lead(Pb), sulphur(S) and vanadium(V) was determined for each river. Results indicated that land use, seasonality and river flow were significant determinants for the material loading in the rivers and the receiving port waters. The spatio-temporal distribution patterns of chemical fluxes indicated that industrial activity associated with the a Manzimnyama canal contributed the most, with regards to TDS, NH_4, Ca, K, Mg, Na, S and V, loading in both wet and dry seasons, as well as Al, Cu, Hg and Pb during the dry season. Similarly, industrial activity associated with the u Mbilo/u Mhlatuzana Canal at the lower reaches accounted for the highest P, Al, Cu and Pb fluxes in the wet season alone. Fluxes of these parameters are used to explain theobserved elemental concentrations and patterns of the receiving port waters of the Bayhead Canal.展开更多
Sub-tidal barotropic current variations coupled with residual sea level fluctuation in the Bohai and Yellow Seas during wintertime are addressed in this study.The temporal evolution and spatial distribution of current...Sub-tidal barotropic current variations coupled with residual sea level fluctuation in the Bohai and Yellow Seas during wintertime are addressed in this study.The temporal evolution and spatial distribution of current fluctuation are investigated using moored acoustic Doppler current profiler data in a three-dimensional numerical model.It is found that a southward current followed by a northward current occurred in the northern Yellow Sea during the fluctuation,concurrent with a significant outflow followed by inflow through the Bohai Strait.The process is consistent from surface to bottom and is coupled with remarkable residual sea level fluctuation.This quasi three-day fluctuation with amplitude 0.2-0.3 m/s leads to 1 m/1.2 m drawdown in the northern Yellow and Bohai Seas,respectively,strongly influencing water exchange between those seas.Because this a prominent feature in the seas,it is necessary to evaluate its effect on fluctuation during winter in future studies,in particular,the northward current during the recovery phase of sea level in the Bohai and Yellow Seas regarding seasonal variation.展开更多
This article deals with the important experience of regional planning developed by the CESP (Companhia Energ6tica de Silo Paulo), Brazil, through the implantation of its hydroelectric projects. The company accumulat...This article deals with the important experience of regional planning developed by the CESP (Companhia Energ6tica de Silo Paulo), Brazil, through the implantation of its hydroelectric projects. The company accumulated a large experience in deploying and managing residential centers built to provide support to the works of their dams. The presence of urban planning was verified in all cases studied, with the participation of different professionals such as architects, planners, engineers and landscape designers, from inside or outside the company. This research shows that they used concepts derived from experiences as company towns of 19th century, the neighborhood unit, the garden city, the urbanistic assumptions from CIAM (Congr^s Internationaux d'Architecture Moderne) and the TVA (Tennessee Valley Authority).展开更多
The Merguellil catchment (central Tunisia) has undergone rapid hydrological changes over the last decades. The most visible signs are a marked decrease in surface runoff in the upstream catchment and a complete chan...The Merguellil catchment (central Tunisia) has undergone rapid hydrological changes over the last decades. The most visible signs are a marked decrease in surface runoff in the upstream catchment and a complete change in the recharge processes of the Kairouan aquifer downstream. Fluctuations in rainfall have had a real but limited hydrological impact. Much more important are the consequences of human activities such as soil and water conservation works, small and large dams, pumping for irrigation. Several independent approaches were implemented: hydrodynamics, thermal surveys, geochemistry including isotopes. They helped to identify the different terms of the regional water balance and to characterize their changes over time.展开更多
In this paper, a fully developed laminar flow in a porous channel between two paralleled flat plates in the presence of a double layer electric field is analyzed. The linear Poisson-Boltzmann equation is suggested to ...In this paper, a fully developed laminar flow in a porous channel between two paralleled flat plates in the presence of a double layer electric field is analyzed. The linear Poisson-Boltzmann equation is suggested to model the double layer electric field near the solid-liquid interface. The equation of motion is extended by including the electrical body force generating from the double layer field and then solved analytically. Different from previous models, our proposed one is continuous in the whole flow field and matches commonly-accepted models in the field of fluid mechanics.Besides, the effects of various physical parameters such as the zeta potential, the electrokinetic separation distance, and the ratio of the streaming current to conduction current on the velocity, the pressure, the apparent viscosity of the fluid,as well as the streaming potential are discussed. Physical explanations on the changing trends of those physical quantities with various parameters are given.展开更多
This paper presents 2D wave-current interaction model for evaluating nearly horizontal wave-induced currents in the surf-zone and coastal waters.The hydrodynamic model is the two-dimensional depth-averaged nonlinear s...This paper presents 2D wave-current interaction model for evaluating nearly horizontal wave-induced currents in the surf-zone and coastal waters.The hydrodynamic model is the two-dimensional depth-averaged nonlinear shallow water equations by using an unstructured non-staggered and multiple-level quadtree rectangular mesh,this mesh information is stored in simple data structures and it is easy to obtain a locally high resolution for important region.The intercell fluxes are computed based on the HLL(Harten-Lax-van Leer) approximate Riemann solver with shock capturing capability for computing the dry-to-wet interface of coastal line.The effects of pressure and gravity are included in source term in the model,this treatment can simplify the computation and eliminate numerical imbalance between source and flux terms.The wave model readily provides the radiation stresses that represent the shortwave-averaged forces in a water column for the hydrodynamic model and the wave model takes into account the effect of wave-induced nearshore currents and water level.The coupling model is applied to verify different experimental cases and real life case of considering the wave-current interaction.The calculated results agree with analytical solution,experimental and field data.The results show that the modeling approach presented herein should be useful in simulating the nearshore processes in complicated natural coastal domains.展开更多
This paper presents a novel approach to find optimum locations and capacity of flexible alternating current transmission system (FACTS) devices in a power system using a multi-objective optimization function. Thyristo...This paper presents a novel approach to find optimum locations and capacity of flexible alternating current transmission system (FACTS) devices in a power system using a multi-objective optimization function. Thyristor controlled series compensators (TCSCs) and static var compensators (SVCs) are the utilized FACTS devices. Our objectives are active power loss reduction, newly introduced FACTS devices cost reduction, voltage deviation reduction, and increase on the robustness of the security margin against voltage collapse. The operational and controlling constraints, as well as load constraints, were considered in the optimum allocation. A goal attainment method based on the genetic algorithm (GA) was used to approach the global optimum. The estimated annual load profile was utilized in a sequential quadratic programming (SQP) optimization sub-problem to the optimum siting and sizing of FACTS devices. Fars Regional Electric Network was selected as a practical system to validate the performance and effectiveness of the proposed method. The entire investment of the FACTS devices was paid off and an additional 2.4% savings was made. The cost reduction of peak point power generation implies that power plant expansion can be postponed.展开更多
基金Natural Science Foundation of Gansu Province(Joint)Project(No.213244)Natural Science Foundation of Gansu Province(No.145RJZA136)Youth Science Foundation of Lanzhou Jiaotong University(No.2013040)
文摘In view of the current sensors failure in electric pitch system,a variable universe fuzzy fault tolerant control method of electric pitch control system based on single current detection is proposed.When there is single or two-current sensor fault occurs,based on the proposed method the missing current information can be reconstructed by using direct current(DC)bus current sensor and the three-phase current can be updated in time within any two adjacent sampling periods,so as to ensure stability of the closed-loop system.And then the switchover and fault tolerant control of fault current sensor would be accomplished by fault diagnosis method based on adaptive threshold judgment.For the reconstructed signal error caused by the modulation method and the main control target of electric pitch system,a variable universe fuzzy control method is used in the speed loop,which can improve the anti-disturbance ability to load variation,and the robustness of fault tolerance system.The results show that the fault tolerant control method makes the variable pitch control system still has ideal control characteristics in case of sensor failure although part of the system performance is lost,thus the correctness of the proposed method is verified.
文摘This paper summarizes some of the typical riser vortex-induced vibration (VIV) problems in subsea oil and gas developments, and presents the corresponding computational fluid dynamics (CFD) time domain simula- tion results to address these problems. First, the CFD time domain simulation approach was applied to analyze the wake field behind a stationary cylinder and a vibrating cylinder. Then a vertical riser VIV response under uniform current was studied. The VIV response time histories revealed some valuable clues that could lead to explanation of the higher harmonics. After that, a vertical riser VIV response under shear current was investigated. A 3 000 ft (1 ft=-0.304 8 m) water depth top tensioned riser was sized, and its VIV responses under uniform and shear current were studied. Then this paper continues to discuss one catenary flexible riser VIV response during normal lay. Last, the time domain simulation approach was applied to a partially submerged flexible jumper, to study the jumper VIV behavior, and dynamic motion envelopes. It was demonstrated that the time domain simulation ap- proach is able to disclose details of the flow field, vortex shedding pattern, and riser dynamic behavior, and han- dle different tvoes of risers under different Woe of currents.
基金the special funding of Guiyang science and technology bureau and Guiyang University[GYUKY-[2021]]the National Key Research and Development Program of China-Geophysical Comprehensive Exploration and Information Extraction of Deep Mineral Resources(2016YFC0600505)the National K&D Program(2018YFC1504901,2018YFC1504904).
文摘Based on an analytical solution for the current point source in an anisotropic half-space,we study the apparent resistivity and apparent chargeability of a transversely isotropic medium with vertical and horizontal axes symmetry,respectively.We then provide a simple derivation of the anisotropy paradoxes in direct current resistivity and time-domain induced polarization methods.Analogous to the mean resistivity,we propose a formulation for deriving the mean polarizability.We also present a three-dimensional finite element algorithm for modeling the direct current resistivity and time-domain induced polarization using an unstructured tetrahedral grid.Finally,we provide the apparent resistivity and apparent chargeability curves of a tilted,transversely isotropic medium with diff erent angles,respectively.The subsequent results illustrate the anisotropy paradoxes of direct current resistivity and time-domain induced polarization.
文摘Aluminum (AI), Vanadium (V), Chromium (Cr), Manganese (Mn), Iron (Fe), Strontium (Sr), Molybdenum (Mo), Silver (Ag), Cadmium (Cd), Tin (Sn), Caesium (Cs), Barium (Ba), Lead (Pb), Bismuth (Bi) and Uranium (U) concentrations were investigated in water samples from fifteen sampling locations in Naviundu river basin, Luano and Ruashi rivers and Luwowoshi spring in Lubumbashi city during February, March and April 2016. Chemical analyses of the samples were carried out using Inductively Coupled Plasma-Mass Spectrometer. Water pH was determined using a pH-meter and mean pH values ranged from 4.2 to 5.8. The highest mean levels of Al (5,961.954 μg·L^-1), Pb (472.287 μg·L^-1), V (21.014 μg·L^-1), Cr (8.185μg·L^-1), U (4.163μg·L^-1) and Bi (0.012 μg·L^-1) were recorded in Chemaf (Chemicals of Africa) hydrometallurgical plant effluent, those of Mn (29,714.593 μg·L^-1), Sr (374.377μg·L^-1), Cd (11.358μg·L^-1) and Cs (0.107μg·L^-1) in Naviundu river at Cimenkat (Katanga's Cement Factory) exit, those of Fe (14,258.9 μg·L^-1) and Ba (307.641μg·L^-1) in Luano river and those of Ag (2.669 μg·L^-1), Mo (0.559 μg·L^-1) and Sn (0.325 μg·L^-1) were respectively noted in Foire channel, Naviundu river under bridge on Kasenga road and Kalulako river. The concentrations of Cd in Naviundu river at Cimenkat exit (11.358 μg·L^-1), Chemaf bydrometallurgical plant effluent (9.697μg·L^-1), Naviundu river under bridge on De Plaines Avenue (6.95 μg·L^-1) and Kalulako river (3.229 μg·L^-1), Pb concentrations in Chemaf hydrometallurgical plant effluent (472.287 μg·L^-1) as well as the AI, Fe and Mn concentrations recorded in most waters in this study exceeded the WHO (World Health Organization) maximum permissible limits for drinking water. The metal contamination of waters of the studied rivers, channel and spring might be partially attributed to natural processes, unplanned urbanization and poor waste management, and mostly to abandoned and ongoing mining and ore processing activities in Lubumbashi city.
文摘Both winter DJF (December, January, February) months and DJF season means long-term data series of 50 regulated rivers discharges rates and the NAO indices were analyzed for different spans. This study is dictated for: (1) detecting the exclusive impacts of the positive phases of NAO indices on rivers discharges rates by estimating the Linear Correlation Coefficient; (2) modeling the interrelations between the discharges rates and NAO indices by estimating the Linear Regression Models, both for manifesting the impact of the positive phase of NAO index; (3) estimating the Linear Trend Coefficient in the discharge series, for manifesting the contribution of the positive phase of NAO index. Discharge rates are mainly influenced by the two mechanisms: the positive phase of NAO index and the environmental conditions in specific catchments, that is where, the positive phase of the NAO index manifest its impact on the related rivers discharges and its contribution in the related configured trends. The discharges fluctuations patterns show some increase in the discharges values have been occurred in regions around the Northern Baltic Proper as well as in Southern Finland and Sweden. The rivers such as Lagan, Nissan, Helgean, Venta, Pamu, Porvoonjoki, Lapuanjoki, Oulujoki, Kyronjoki, Wisla, Eurajoki, Odra, Lielupe, Gota alv, Motala strom, Nykopingsan, Vuoksi, Kalajoki and Simojoki haven not linear discharges changes registered depending on the specificity of the environmental conditions at the catchments areas for those rivers. The positive phase of NAO index has a linear relation with impacted river discharge.
文摘Most of the hydropower projects in Southwest China and the adjacent foreign regions will be put into operation between 2015 and 2020, which will bring some difficulties for reasonable accommodation and delivery of electric energy. In this paper the author studies the development scale, development schedule, accommodation and transmission schemes of the cascade hydropower stations along the Lancang River basin, one of the five large basins in China, based on the load characteristics of grids at both the sending end and the receiving end, the strategy of complementary utilization of thermal power and hydropower, the advanced transmission technologies, and the optimal economic performance. The study results show that, the cascade hydropower stations on the upper reaches of the Lancang River in Yunnan should mainly serve Guangdong Province, with proper planning of partly serving Yunnan Province during dry seasons. The transmission schemes should adopt UHVDC, UHVAC, and single-tower double-circuited HVDC transmission scheme according to the transmission capacity and distance.
文摘Concentrations of fifteen trace metals including Aluminum (Al), Vanadium (V), Chromium (Cr), Manganese (Mn), Iron (Fe), Strontium (Sr), Molybdenum (Mo), Silver (Ag), Cadmium (Cd), Tin (Sn), Caesium (Cs), Barium (Ba), Lead (Pb), Bismuth (Bi) and Uranium (U) were investigated in water samples collected from sixteen sampling locations in the Lubumbashi river basin and five locations in Kafubu, Kimilolo and Kinkalabwamba rivers during February, March and April 2016. Chemical analyses of the samples were carried out using ICP-MS (Inductively Coupled Plasma-Mass Spectrometer). Water pH was determined using a pH-meter and pH values ranged from 4.2 to 7.8. The highest mean trace metal levels of water were 5,515.816 )μg·L^-1, 166.925μg·L^-1, 3.898μg·L^-1 and 1.879μg·L^-1 for Al, Ba, Cr and U, respectively in Kashobwe river, 2,419.522 μg·L^-1 and 17.994 μg·L^-1 for Fe and Cd, respectively in Kafubu river at its confluence with Lubumbashi rivers, 1,408.136μg·L^-1 for Mn in Kafubu river 1.36 kilometer downward its confluence with Naviundu river, 222.406 μg·L^-1 and 0.092 μg·L^-1 for Sr and Cs, respectively in Kamalondo river 60 meters from the GCM-Lubumbashi (General of Quarries and Mines-Lubumbashi) smelter, 140.294μg·L^-1, 12.063 μg·L^-1 and 0.008μg·L^-1 for Pb, V and Bi, respectively in Munua river, 3.544 μg·L^-1 for Ag in Kabulameshi river, 1.49 μg·L^-1 for Mo in Kafubu river and 0.081μg·L^-1 for Sn in Tshondo river. The mean concentrations of Al, Cd, Fe, Mn and Pb in water of many rivers and the channel exceeded the maximum admissible limits of the WHO (World Health Organization), USEPA (United States Environmental Protection Agency) and EU (European Union) drinking-water standards. Trace metal contamination of water of the studied rivers, channel and springs might be partially attributed to natural processes, unplanned urbanization, poor waste management and mostly to abandoned and ongoing mining and ore processing activities in Lubumbashi city.
文摘Small hydropower plants for electricity generation were first built in Spain in the early 1880s. The Spanish peninsula is characterized by its rugged landscape, fast flowing rivers and steep gradients. A clear example of this is the remarkable area of the upper Ebro river basin where powerful water flows are found that are ideal for electricity generation. Between 1900 and 1930, the river Ebro was a major source of energy for industrial areas such as Alava, Vizcaya, Vitoria, Miranda de Ebro, Burgos and La Rioja. Between 1951-1965, the use of these small hydropower plants declined due to the construction of alternatives by industrialists in the Basque Country, which in most cases led to their deterioration. They were rescued in the late twentieth century, thanks to private sector initiatives which funded their rehabilitation. This study examines two small-scale hydraulic power plants in the province of Burgos at Medina de Pomar and at Quintanilla Escalada; both buildings were used for generating electricity and had living quarters for the workers and now represent historic architectonic and industrial heritage. The study documents their architectonic features and the restoration processes that have permitted one of them to remain in operation up until the present day.
文摘This paper summarizes the development of hydro-projects in China,blended with an international perspective.It expounds major technical progress toward ensuring the safe construction of high dams and river harnessing,and covers the theorization of uneven non-equilibrium sediment transport,inter-basin water diversion,giant hydro-generator units,pumped storage power stations,underground caverns,ecological protection,and so on.
基金the National Research Foundation(NRF)for financial support during this study
文摘The u Mhlatuzana, u Mbilo and a Manzimnyama river catchments located on the eastern seaboard of the Kwa Zulu-Natal province, South Africa, form the core of urbanization and industrialization, contributing the only natural freshwater inflows to the Bayhead Canal portion of the Durban Harbour. In this study, seasonal discharges and physico–chemical water properties were used to quantitatively determine the material mass transport capacity of the river systems on the basis of hydrographic inputs and chemical loading from the surrounding land use sectors.The mass transport of the total dissolved solids(TDS),ammonia(NH_4), phosphorous(P), aluminum(Al), calcium(Ca), copper(Cu), chromium(Cr), mercury(Hg), potassium(K), magnesium(Mg), sodium(Na), nickel(Ni), lead(Pb), sulphur(S) and vanadium(V) was determined for each river. Results indicated that land use, seasonality and river flow were significant determinants for the material loading in the rivers and the receiving port waters. The spatio-temporal distribution patterns of chemical fluxes indicated that industrial activity associated with the a Manzimnyama canal contributed the most, with regards to TDS, NH_4, Ca, K, Mg, Na, S and V, loading in both wet and dry seasons, as well as Al, Cu, Hg and Pb during the dry season. Similarly, industrial activity associated with the u Mbilo/u Mhlatuzana Canal at the lower reaches accounted for the highest P, Al, Cu and Pb fluxes in the wet season alone. Fluxes of these parameters are used to explain theobserved elemental concentrations and patterns of the receiving port waters of the Bayhead Canal.
基金Supported by the National Natural Science Foundation of China(Nos.41430963,41276013)
文摘Sub-tidal barotropic current variations coupled with residual sea level fluctuation in the Bohai and Yellow Seas during wintertime are addressed in this study.The temporal evolution and spatial distribution of current fluctuation are investigated using moored acoustic Doppler current profiler data in a three-dimensional numerical model.It is found that a southward current followed by a northward current occurred in the northern Yellow Sea during the fluctuation,concurrent with a significant outflow followed by inflow through the Bohai Strait.The process is consistent from surface to bottom and is coupled with remarkable residual sea level fluctuation.This quasi three-day fluctuation with amplitude 0.2-0.3 m/s leads to 1 m/1.2 m drawdown in the northern Yellow and Bohai Seas,respectively,strongly influencing water exchange between those seas.Because this a prominent feature in the seas,it is necessary to evaluate its effect on fluctuation during winter in future studies,in particular,the northward current during the recovery phase of sea level in the Bohai and Yellow Seas regarding seasonal variation.
文摘This article deals with the important experience of regional planning developed by the CESP (Companhia Energ6tica de Silo Paulo), Brazil, through the implantation of its hydroelectric projects. The company accumulated a large experience in deploying and managing residential centers built to provide support to the works of their dams. The presence of urban planning was verified in all cases studied, with the participation of different professionals such as architects, planners, engineers and landscape designers, from inside or outside the company. This research shows that they used concepts derived from experiences as company towns of 19th century, the neighborhood unit, the garden city, the urbanistic assumptions from CIAM (Congr^s Internationaux d'Architecture Moderne) and the TVA (Tennessee Valley Authority).
文摘The Merguellil catchment (central Tunisia) has undergone rapid hydrological changes over the last decades. The most visible signs are a marked decrease in surface runoff in the upstream catchment and a complete change in the recharge processes of the Kairouan aquifer downstream. Fluctuations in rainfall have had a real but limited hydrological impact. Much more important are the consequences of human activities such as soil and water conservation works, small and large dams, pumping for irrigation. Several independent approaches were implemented: hydrodynamics, thermal surveys, geochemistry including isotopes. They helped to identify the different terms of the regional water balance and to characterize their changes over time.
基金Supported by National Natural Science Foundation of China under Grant No.11872241
文摘In this paper, a fully developed laminar flow in a porous channel between two paralleled flat plates in the presence of a double layer electric field is analyzed. The linear Poisson-Boltzmann equation is suggested to model the double layer electric field near the solid-liquid interface. The equation of motion is extended by including the electrical body force generating from the double layer field and then solved analytically. Different from previous models, our proposed one is continuous in the whole flow field and matches commonly-accepted models in the field of fluid mechanics.Besides, the effects of various physical parameters such as the zeta potential, the electrokinetic separation distance, and the ratio of the streaming current to conduction current on the velocity, the pressure, the apparent viscosity of the fluid,as well as the streaming potential are discussed. Physical explanations on the changing trends of those physical quantities with various parameters are given.
基金supported by the National Natural Science Foundation of China (Grant No. 50839001)the research grant from Southeast Regional Research Initiative (SERRI,80037)the Coastal Inlets Research Program,ERDC,US Army Corps of Engineers,Vicksburg,MS,USA
文摘This paper presents 2D wave-current interaction model for evaluating nearly horizontal wave-induced currents in the surf-zone and coastal waters.The hydrodynamic model is the two-dimensional depth-averaged nonlinear shallow water equations by using an unstructured non-staggered and multiple-level quadtree rectangular mesh,this mesh information is stored in simple data structures and it is easy to obtain a locally high resolution for important region.The intercell fluxes are computed based on the HLL(Harten-Lax-van Leer) approximate Riemann solver with shock capturing capability for computing the dry-to-wet interface of coastal line.The effects of pressure and gravity are included in source term in the model,this treatment can simplify the computation and eliminate numerical imbalance between source and flux terms.The wave model readily provides the radiation stresses that represent the shortwave-averaged forces in a water column for the hydrodynamic model and the wave model takes into account the effect of wave-induced nearshore currents and water level.The coupling model is applied to verify different experimental cases and real life case of considering the wave-current interaction.The calculated results agree with analytical solution,experimental and field data.The results show that the modeling approach presented herein should be useful in simulating the nearshore processes in complicated natural coastal domains.
文摘This paper presents a novel approach to find optimum locations and capacity of flexible alternating current transmission system (FACTS) devices in a power system using a multi-objective optimization function. Thyristor controlled series compensators (TCSCs) and static var compensators (SVCs) are the utilized FACTS devices. Our objectives are active power loss reduction, newly introduced FACTS devices cost reduction, voltage deviation reduction, and increase on the robustness of the security margin against voltage collapse. The operational and controlling constraints, as well as load constraints, were considered in the optimum allocation. A goal attainment method based on the genetic algorithm (GA) was used to approach the global optimum. The estimated annual load profile was utilized in a sequential quadratic programming (SQP) optimization sub-problem to the optimum siting and sizing of FACTS devices. Fars Regional Electric Network was selected as a practical system to validate the performance and effectiveness of the proposed method. The entire investment of the FACTS devices was paid off and an additional 2.4% savings was made. The cost reduction of peak point power generation implies that power plant expansion can be postponed.