采用分段线性电流密度递归卷积(P iecew ise L inear C u rren t D en sity R ecu rsive C onvo lu tion)方法将交替方向隐式时域有限差分方法(AD I-FDTD)推广应用于色散介质—等离子体中,得到了二维情况下等离子体中的迭代差分公式,为...采用分段线性电流密度递归卷积(P iecew ise L inear C u rren t D en sity R ecu rsive C onvo lu tion)方法将交替方向隐式时域有限差分方法(AD I-FDTD)推广应用于色散介质—等离子体中,得到了二维情况下等离子体中的迭代差分公式,为了验证该方法的有效性和可靠性,计算了等离子体涂敷导体圆柱的RC S和非均匀等离子体平板的反射系数,数据仿真结果表明,此算法与传统的FDTD相比,在计算结果吻合的情况下,存储量相当,计算效率更高,时间步长仅仅由计算精度来决定.展开更多
文摘采用分段线性电流密度递归卷积(P iecew ise L inear C u rren t D en sity R ecu rsive C onvo lu tion)方法将交替方向隐式时域有限差分方法(AD I-FDTD)推广应用于色散介质—等离子体中,得到了二维情况下等离子体中的迭代差分公式,为了验证该方法的有效性和可靠性,计算了等离子体涂敷导体圆柱的RC S和非均匀等离子体平板的反射系数,数据仿真结果表明,此算法与传统的FDTD相比,在计算结果吻合的情况下,存储量相当,计算效率更高,时间步长仅仅由计算精度来决定.