The effects of relative humidity (RH) on a printed circuit board finished with electroless nickel immersion gold (PCB-ENIG) under an adsorbed thin electrolyte layer (ATEL) were investigated in situ via the measurement...The effects of relative humidity (RH) on a printed circuit board finished with electroless nickel immersion gold (PCB-ENIG) under an adsorbed thin electrolyte layer (ATEL) were investigated in situ via the measurement of cathodic polarization curves, electrochemical impedance spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy to clearly elaborate the corrosion behavior of PCB-ENIG in the atmospheric environment. Results indicated that the cathodic process of PCB-ENIG under ATEL was dominated by the reduction of dissolved oxygen, corrosion products, and H2O. The cathodic current density of PCB-ENIG increased progressively with increasing RH. Moreover, its cathodic current density in the solution was greater than that under ATEL. This result demonstrated that the diffusion process was not the controlling step during the limiting reduction of cathodic oxygen. When the polarization potentials were located in a more negative region, the cathodic polarization current density gradually decreased under 75% and 85% RH. Notably, the anodic process became the controlling step in the extremely thin liquid film during the remainder of the experiment.展开更多
The current blockade mechanism for λ -DNA translocation under electrical field is investigated through solid-state nanopores with different pore thicknesses. The conductance of a nanopore system mainly consists of t...The current blockade mechanism for λ -DNA translocation under electrical field is investigated through solid-state nanopores with different pore thicknesses. The conductance of a nanopore system mainly consists of the contribution of the pore and access region, and the latter becomes dominant when the nanopore thickness gradually decreases to atomic layer thickness. Based on the existing model of nanopore resistance, a simplified model which describes the relative current blockade during the X-DNA translocation through the nanopores is deduced to quantitatively present the relationship between nanopore thickness and relative current blockade. Results show that the relative current blockade is effectively increased by reducing the nanopore diameter but it decreases with the decreasing nanopore thickness. A two-stage schematic is proposed to increase the relative current blockade by setting a much smaller resistance region. Experimental results show a 21. 9% increase in the relative current blockade with the proposed schematic.展开更多
基金Project(51271032)supported by the National Natural Science Foundation of ChinaProject(2014CB643300)supported by the National Basic Research Program of ChinaProject supported by the National Environmental Corrosion Platform,China
文摘The effects of relative humidity (RH) on a printed circuit board finished with electroless nickel immersion gold (PCB-ENIG) under an adsorbed thin electrolyte layer (ATEL) were investigated in situ via the measurement of cathodic polarization curves, electrochemical impedance spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy to clearly elaborate the corrosion behavior of PCB-ENIG in the atmospheric environment. Results indicated that the cathodic process of PCB-ENIG under ATEL was dominated by the reduction of dissolved oxygen, corrosion products, and H2O. The cathodic current density of PCB-ENIG increased progressively with increasing RH. Moreover, its cathodic current density in the solution was greater than that under ATEL. This result demonstrated that the diffusion process was not the controlling step during the limiting reduction of cathodic oxygen. When the polarization potentials were located in a more negative region, the cathodic polarization current density gradually decreased under 75% and 85% RH. Notably, the anodic process became the controlling step in the extremely thin liquid film during the remainder of the experiment.
基金The Natural Science Foundation of Jiangsu Province(No.BK20160935)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.16KJB460015)
文摘The current blockade mechanism for λ -DNA translocation under electrical field is investigated through solid-state nanopores with different pore thicknesses. The conductance of a nanopore system mainly consists of the contribution of the pore and access region, and the latter becomes dominant when the nanopore thickness gradually decreases to atomic layer thickness. Based on the existing model of nanopore resistance, a simplified model which describes the relative current blockade during the X-DNA translocation through the nanopores is deduced to quantitatively present the relationship between nanopore thickness and relative current blockade. Results show that the relative current blockade is effectively increased by reducing the nanopore diameter but it decreases with the decreasing nanopore thickness. A two-stage schematic is proposed to increase the relative current blockade by setting a much smaller resistance region. Experimental results show a 21. 9% increase in the relative current blockade with the proposed schematic.