Hydrophilic ceramic membranes would be potential candidates for membrane gas absorption if they could be applied to appropriate separation processes.This study highlights a novel concept for the practical implementati...Hydrophilic ceramic membranes would be potential candidates for membrane gas absorption if they could be applied to appropriate separation processes.This study highlights a novel concept for the practical implementation of SO_2 absorption in hydrophilic ceramic membrane that exhibits outstanding thermal and mechanical stabilities.With this aim,we investigated experimentally the performance of SO_2 absorption into aqueous sodium hydroxide (NaOH) solution in a hydrophilic alumina (Al_2O_3) membrane contactor in terms of SO_2 removal efficiency and SO_2 mass transfer flux,and compared the performance with that in a hydrophobic one.A series of experiments were performed at various conditions over a NaOH concentration range of 0–1.0 mol·L^(-1),a liquid flow rate range of 30–180 ml·min^(-1),a gas flow rate range of 120–1000 ml·min^(-1),an inlet SO_2 concentration range of 400–2000μl·L^(-1),and a temperature range of 10–35°C.It was found that the hydrophilic membrane was more competitive when using a NaOH concentration higher than 0.2 mol·L^(-1).Furthermore,it can be inferred that the hydrophilicα-Al_2O_3 membrane exhibited exceptional long-term stability under 480 h continuous operation.展开更多
In this paper, we derive a unified scattering theory model for current noise based on the equivalent contact model of the scattering region. Our model seamlessly covers the whole range of transport regimes from cohere...In this paper, we derive a unified scattering theory model for current noise based on the equivalent contact model of the scattering region. Our model seamlessly covers the whole range of transport regimes from coherent transport to incoherent transport and it also includes the effects of Pauli exclusion and Coulomb interaction on shot noise.展开更多
基金Supported by the National Key R&D Plan(2016YFC0205700)the National Natural Science Foundation of China(91534108,21506093,21706114)+2 种基金the Natural Science Foundation of Jiangsu Province(BK20150947,BK20160979)the National High Technology Research and Development Program of China(2012AA03A606)the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Hydrophilic ceramic membranes would be potential candidates for membrane gas absorption if they could be applied to appropriate separation processes.This study highlights a novel concept for the practical implementation of SO_2 absorption in hydrophilic ceramic membrane that exhibits outstanding thermal and mechanical stabilities.With this aim,we investigated experimentally the performance of SO_2 absorption into aqueous sodium hydroxide (NaOH) solution in a hydrophilic alumina (Al_2O_3) membrane contactor in terms of SO_2 removal efficiency and SO_2 mass transfer flux,and compared the performance with that in a hydrophobic one.A series of experiments were performed at various conditions over a NaOH concentration range of 0–1.0 mol·L^(-1),a liquid flow rate range of 30–180 ml·min^(-1),a gas flow rate range of 120–1000 ml·min^(-1),an inlet SO_2 concentration range of 400–2000μl·L^(-1),and a temperature range of 10–35°C.It was found that the hydrophilic membrane was more competitive when using a NaOH concentration higher than 0.2 mol·L^(-1).Furthermore,it can be inferred that the hydrophilicα-Al_2O_3 membrane exhibited exceptional long-term stability under 480 h continuous operation.
基金This research was financially supported by Scientific Research Fund of Shaanxi Provincial Education Department (Grant No. 2013K1115) ,the National Natural Science Foundation of China (Grant No. 61106062), the Fundamental Research Funds for the Central Universities (Grant No. K50511050007), and the Fundamental Research Funds for AnKang University (Grant No. AYQDZR201206).
文摘In this paper, we derive a unified scattering theory model for current noise based on the equivalent contact model of the scattering region. Our model seamlessly covers the whole range of transport regimes from coherent transport to incoherent transport and it also includes the effects of Pauli exclusion and Coulomb interaction on shot noise.