Some Over-Current Limit Control strategies are analyzed and designed to meet the demands of high reliability and rapid dynamic response in the aeronautical power supply applications. The control schemes are both effec...Some Over-Current Limit Control strategies are analyzed and designed to meet the demands of high reliability and rapid dynamic response in the aeronautical power supply applications. The control schemes are both effective in DC-DC converters and DC-AC converters. Controller models are set up, and the over-current limit operation principles of analogy and digital control are analyzed too. An 800VA aeronautical power supply bas been constructed to verify the performance of the proposed control strategy in various cases such as the sudden load change and the constant load. The analysis and experiments confirm the advantages of the proposed over-current limit strategies as follows: simple,effective and reliable.展开更多
Two types of coaxial self-balancing robots(CSBR)were proposed,one can be used as a mobile robot platform for parts transporting in unmanned factory or as an inspector in dangerous areas,and the other can be used as a ...Two types of coaxial self-balancing robots(CSBR)were proposed,one can be used as a mobile robot platform for parts transporting in unmanned factory or as an inspector in dangerous areas,and the other can be used as a personal transporter ridden in cities.Mechanical designing and control structures as well as control strategies were described and compared in order to get a general way to develop such robots.A state feedback controller and a fuzzy controller were designed for the robot using DC servo motors and the robot using torque motors,respectively.The experiments indicate that the robots can realize various desired operations smoothly and agilely at the velocity of 0.6 m/s with an operator of 65 kg.Furthermore,the robustness of the controllers is revealed since these controllers can stabilize the robot even with unknown external disturbances.展开更多
An analytic closed-form based loop compensator for direct current-direct current (DC-DC) buckboost converter in discontinuous conduction with peak current-mode control is proposed to increase efficiency of the desir...An analytic closed-form based loop compensator for direct current-direct current (DC-DC) buckboost converter in discontinuous conduction with peak current-mode control is proposed to increase efficiency of the desired process through systemization. As a result, the process saves a lot of computation time that can be translated into design cost savings. Finally, the output voltage regulation in the presence of audio susceptibility and output impedance is shown for verifying.展开更多
The vector control algorithm based on vector space decomposition (VSD) transformation method has a more flexible control freedom, which can control the fundamental and harmonic subspace separately. To this end, a cu...The vector control algorithm based on vector space decomposition (VSD) transformation method has a more flexible control freedom, which can control the fundamental and harmonic subspace separately. To this end, a current vector decoupling control algorithm for six-phase permanent magnet synchronous motor (PMSM) is designed. Using the proposed synchronous rotating coordinate transformation matrix, the fundamental and harmonic components in d-q subspace are changed into direct current (DC) component, only using the traditional proportional integral (PI) controller can meet the non-static difference adjustment, and the controller parameter design method is given by employing intemal model principle. In addition, in order to remove the 5th and 7th harmonic components of stator current, the current PI controller parallel with resonant controller is employed in x-y subspace to realize the specific harmonic component compensation. Simulation results verify the effectiveness of current decoupling vector controller.展开更多
基金the National Natural Science Foundation of China (Grant No.50237030).
文摘Some Over-Current Limit Control strategies are analyzed and designed to meet the demands of high reliability and rapid dynamic response in the aeronautical power supply applications. The control schemes are both effective in DC-DC converters and DC-AC converters. Controller models are set up, and the over-current limit operation principles of analogy and digital control are analyzed too. An 800VA aeronautical power supply bas been constructed to verify the performance of the proposed control strategy in various cases such as the sudden load change and the constant load. The analysis and experiments confirm the advantages of the proposed over-current limit strategies as follows: simple,effective and reliable.
基金Project(61273344)supported by the National Natural Science Foundation of ChinaProject(SKLRS-2010-ZD-40)supported by the StateKey Laboratory of Robotics and Systems(HIT),China+1 种基金Project(2008AA04Z208)supported by the National Hi-tech Research and Development Program of ChinaProject(20121101110011)supported by PhD Program Foundation of Ministry of Education,China
文摘Two types of coaxial self-balancing robots(CSBR)were proposed,one can be used as a mobile robot platform for parts transporting in unmanned factory or as an inspector in dangerous areas,and the other can be used as a personal transporter ridden in cities.Mechanical designing and control structures as well as control strategies were described and compared in order to get a general way to develop such robots.A state feedback controller and a fuzzy controller were designed for the robot using DC servo motors and the robot using torque motors,respectively.The experiments indicate that the robots can realize various desired operations smoothly and agilely at the velocity of 0.6 m/s with an operator of 65 kg.Furthermore,the robustness of the controllers is revealed since these controllers can stabilize the robot even with unknown external disturbances.
文摘An analytic closed-form based loop compensator for direct current-direct current (DC-DC) buckboost converter in discontinuous conduction with peak current-mode control is proposed to increase efficiency of the desired process through systemization. As a result, the process saves a lot of computation time that can be translated into design cost savings. Finally, the output voltage regulation in the presence of audio susceptibility and output impedance is shown for verifying.
基金Project(51507188)supported by the National Natural Science Foundation of China
文摘The vector control algorithm based on vector space decomposition (VSD) transformation method has a more flexible control freedom, which can control the fundamental and harmonic subspace separately. To this end, a current vector decoupling control algorithm for six-phase permanent magnet synchronous motor (PMSM) is designed. Using the proposed synchronous rotating coordinate transformation matrix, the fundamental and harmonic components in d-q subspace are changed into direct current (DC) component, only using the traditional proportional integral (PI) controller can meet the non-static difference adjustment, and the controller parameter design method is given by employing intemal model principle. In addition, in order to remove the 5th and 7th harmonic components of stator current, the current PI controller parallel with resonant controller is employed in x-y subspace to realize the specific harmonic component compensation. Simulation results verify the effectiveness of current decoupling vector controller.