Stem cells from extra-or intrahepatic sources have been recently characterized and their usefulness for the generation of hepatocyte-like lineages has been demonstrated. Therefore, they are being increasingly consider...Stem cells from extra-or intrahepatic sources have been recently characterized and their usefulness for the generation of hepatocyte-like lineages has been demonstrated. Therefore, they are being increasingly considered for future applications in liver cell therapy. In that field, liver cell transplantation is currently regarded as a possible alternative to whole organ transplantation, while stem cells possess theoretical advantages on hepatocytes as they display higher in vitro culture performances and could be used in autologous transplant procedures. However, the current research on the hepatic fate of stem cells is still facing difficulties to demonstrate the acquisition of a full mature hepatocyte phenotype, both in vitro and in vivo. Furthermore, the lack of obvious demonstration of in vivo hepatocyte-like cell functionality remains associated to low repopulation rates obtained after current transplantation procedures. The present review focuses on the current knowledge of the stem cell potential for liver therapy. We discuss the characteristics of the principal cell candidates and the methods to demonstrate their hepatic potential in vitro and in vivo. We finally address the question of the future clinical applications of stem cells for liver tissue repair and the technical aspects that remain to be investigated.展开更多
Microbial fuel cell(MFC) on the ocean floor is a kind of novel energy-harvesting device that can be developed to drive small instruments to work continuously.The shape of electrode has a great effect on the performanc...Microbial fuel cell(MFC) on the ocean floor is a kind of novel energy-harvesting device that can be developed to drive small instruments to work continuously.The shape of electrode has a great effect on the performance of the MFC.In this paper,several shapes of electrode and cell structure were designed,and their performance in MFC were compared in pairs:Mesh(cell-1) vs.flat plate(cell-2),branch(cell-3) vs.cylinder(cell-4),and forest(cell-5) vs.disk(cell-6) FC.Our results showed that the maximum power densities were 16.50,14.20,19.30,15.00,14.64,and 9.95 mWm-2 for cell-1,2,3,4,5 and 6 respectively.And the corre-sponding diffusion-limited currents were 7.16,2.80,18.86,10.50,18.00,and 6.900 mA.The mesh and branch anodes showed higher power densities and much higher diffusion-limited currents than the flat plate and the cylinder anodes respectively due to the low diffusion hindrance with the former anodes.The forest cathode improved by 47% of the power density and by 161% of diffusion-limited current than the disk cathode due to the former's extended solid/liquid/gas three-phase boundary.These results indicated that the shape of electrode is a major parameter that determining the diffusion-limited current of an MFC,and the differences in the elec-trode shape lead to the differences in cell performance.These results would be useful for MFC structure design in practical applica-tions.展开更多
Objective Electrophysiological examination of the ipsilateral pretectotectal projection has proved that pretectal cells elicit strong suppressive responses to the ipsilateral tectum.However,the neural mechanisms under...Objective Electrophysiological examination of the ipsilateral pretectotectal projection has proved that pretectal cells elicit strong suppressive responses to the ipsilateral tectum.However,the neural mechanisms underlying the contralateral pretectotectal prejection are still obscure.The present study aimed to examine the synaptic nature of pretectal nuclei and contralateral tectal cells,and to demonstrate the spatiotemporal pattern of neuronal activity in the 2 main brain structures. Methods Intracellular recording and current source density(CSD)analysis were used to test the complexity of neuronal mechanism of pretectotectal information transfer.Results The pretectal stimulation elicited only one type of response on the contralateral tectum,the inhibitory postsynaptic potential(IPSP).The majority of contra-induced IPSPs were assumed to be polysynaptically driven.In the CSD analysis,only one sink with short latency was observed in each profile.The ipsilateral projection produced a prominent monosynaptic sink in layer 8 of tectum.Recipient neurons were located in layers 6 and 7 of tectum.The result confirmed former findings from ipsilateral intracellular recordings.Conclusion These results suggest the following neuronal circuit:afferents from the pretectal nuclei broadly inhibit both tectal neuron,and since no second sink occurs in tectal layers,the pretectotectal excitatory afferents probably do not extend over the whole tectum,but are within limited state.The results of intracellular recording and CSD analysis further provide evidence of how pretectal afferent activity flows within the tectal laminae.展开更多
The past five years have witnessed the discovery of the endoplasmic reticulum calcium(Ca2+) sensor STIM1 and the plasma membrane Ca2+channel Orai1 as the bona fide molecular components of the store-operated Ca2+ entry...The past five years have witnessed the discovery of the endoplasmic reticulum calcium(Ca2+) sensor STIM1 and the plasma membrane Ca2+channel Orai1 as the bona fide molecular components of the store-operated Ca2+ entry(SOCE) and the Ca2+ release-activated Ca2+current(I CRAC) .It has been known for two decades that SOCE and ICRAC are required for lymphocyte activation as evidenced by severe immunodeficient phenotypes in patients lacking ICRAC.In recent years however,studies have uncovered expression of STIM1 and Orai1 proteins in various tissues and described additional roles for these proteins in physiological functions and pathophysiological conditions.Here,we will summarize novel findings pertaining to the role of STIM1 and Orai1 in the vascular system and discuss their potential use as targets in the therapy of vascular disease.展开更多
文摘Stem cells from extra-or intrahepatic sources have been recently characterized and their usefulness for the generation of hepatocyte-like lineages has been demonstrated. Therefore, they are being increasingly considered for future applications in liver cell therapy. In that field, liver cell transplantation is currently regarded as a possible alternative to whole organ transplantation, while stem cells possess theoretical advantages on hepatocytes as they display higher in vitro culture performances and could be used in autologous transplant procedures. However, the current research on the hepatic fate of stem cells is still facing difficulties to demonstrate the acquisition of a full mature hepatocyte phenotype, both in vitro and in vivo. Furthermore, the lack of obvious demonstration of in vivo hepatocyte-like cell functionality remains associated to low repopulation rates obtained after current transplantation procedures. The present review focuses on the current knowledge of the stem cell potential for liver therapy. We discuss the characteristics of the principal cell candidates and the methods to demonstrate their hepatic potential in vitro and in vivo. We finally address the question of the future clinical applications of stem cells for liver tissue repair and the technical aspects that remain to be investigated.
基金supported by the Key Project of Natural Science Fund of Shandong Province (ZR2011BZ008)the Marine Renewable Energy Special Fund Project from the State Oceanic Administration PRC (GHME2011GD04)+2 种基金the Scientific and Technology Development Plan Project of Shandong Province,China (2008GG10007003)the Key Laboratory of Submarine Geoscience and Exploring Technology of the Ministry of Education,Ocean University of China (Grant No. 2008-01)the Key Laboratory of Marine Environment & Ecology,Ministry of Education (Grant No. 2008010)
文摘Microbial fuel cell(MFC) on the ocean floor is a kind of novel energy-harvesting device that can be developed to drive small instruments to work continuously.The shape of electrode has a great effect on the performance of the MFC.In this paper,several shapes of electrode and cell structure were designed,and their performance in MFC were compared in pairs:Mesh(cell-1) vs.flat plate(cell-2),branch(cell-3) vs.cylinder(cell-4),and forest(cell-5) vs.disk(cell-6) FC.Our results showed that the maximum power densities were 16.50,14.20,19.30,15.00,14.64,and 9.95 mWm-2 for cell-1,2,3,4,5 and 6 respectively.And the corre-sponding diffusion-limited currents were 7.16,2.80,18.86,10.50,18.00,and 6.900 mA.The mesh and branch anodes showed higher power densities and much higher diffusion-limited currents than the flat plate and the cylinder anodes respectively due to the low diffusion hindrance with the former anodes.The forest cathode improved by 47% of the power density and by 161% of diffusion-limited current than the disk cathode due to the former's extended solid/liquid/gas three-phase boundary.These results indicated that the shape of electrode is a major parameter that determining the diffusion-limited current of an MFC,and the differences in the elec-trode shape lead to the differences in cell performance.These results would be useful for MFC structure design in practical applica-tions.
基金supported by the 21st Century program,Committee of Education of Japan at the Kyushu Institute of Technology,and the Health Bureau of Shangdong Province,China
文摘Objective Electrophysiological examination of the ipsilateral pretectotectal projection has proved that pretectal cells elicit strong suppressive responses to the ipsilateral tectum.However,the neural mechanisms underlying the contralateral pretectotectal prejection are still obscure.The present study aimed to examine the synaptic nature of pretectal nuclei and contralateral tectal cells,and to demonstrate the spatiotemporal pattern of neuronal activity in the 2 main brain structures. Methods Intracellular recording and current source density(CSD)analysis were used to test the complexity of neuronal mechanism of pretectotectal information transfer.Results The pretectal stimulation elicited only one type of response on the contralateral tectum,the inhibitory postsynaptic potential(IPSP).The majority of contra-induced IPSPs were assumed to be polysynaptically driven.In the CSD analysis,only one sink with short latency was observed in each profile.The ipsilateral projection produced a prominent monosynaptic sink in layer 8 of tectum.Recipient neurons were located in layers 6 and 7 of tectum.The result confirmed former findings from ipsilateral intracellular recordings.Conclusion These results suggest the following neuronal circuit:afferents from the pretectal nuclei broadly inhibit both tectal neuron,and since no second sink occurs in tectal layers,the pretectotectal excitatory afferents probably do not extend over the whole tectum,but are within limited state.The results of intracellular recording and CSD analysis further provide evidence of how pretectal afferent activity flows within the tectal laminae.
基金supported by the National Institutes of Health(Grant No. 5R01HL097111)to Mohamed Trebak
文摘The past five years have witnessed the discovery of the endoplasmic reticulum calcium(Ca2+) sensor STIM1 and the plasma membrane Ca2+channel Orai1 as the bona fide molecular components of the store-operated Ca2+ entry(SOCE) and the Ca2+ release-activated Ca2+current(I CRAC) .It has been known for two decades that SOCE and ICRAC are required for lymphocyte activation as evidenced by severe immunodeficient phenotypes in patients lacking ICRAC.In recent years however,studies have uncovered expression of STIM1 and Orai1 proteins in various tissues and described additional roles for these proteins in physiological functions and pathophysiological conditions.Here,we will summarize novel findings pertaining to the role of STIM1 and Orai1 in the vascular system and discuss their potential use as targets in the therapy of vascular disease.