为了提高低压差线性稳压器(low dropout regulator,LDO)在全负载电流范围内的稳定性,提出了一种采用电流缓冲器的反嵌套密勒补偿结构(reverse nested miller compensation with current buffers,RNMCCB)的LDO,外部补偿环使用电流镜作为...为了提高低压差线性稳压器(low dropout regulator,LDO)在全负载电流范围内的稳定性,提出了一种采用电流缓冲器的反嵌套密勒补偿结构(reverse nested miller compensation with current buffers,RNMCCB)的LDO,外部补偿环使用电流镜作为反相电流缓冲器,内部补偿环使用共栅级放大器作为电流缓冲器。该补偿结构不需要额外的晶体管,保证了LDO的负反馈性质;引入两个左半平面的零点,增加了电路的相位裕度。仿真结果表明,在轻载(1 mA)至重载(600 mA)、输出电容为0.1~5μF环境下,最小相位裕度为38°,输出电压的下冲为10.6 mV,上冲为11.7 mV,达到设计要求。展开更多
Electrorheologica (ER) technique is a developing technology. In a wide range of engineering applications of ER fluid, shock absorbers employing ER fluids, whose damping force can be controlled continuously and promptl...Electrorheologica (ER) technique is a developing technology. In a wide range of engineering applications of ER fluid, shock absorbers employing ER fluids, whose damping force can be controlled continuously and promptly through electric signals, is one of the most prospective applications of ER fluid. In this paper, the theoretical midel and method to predict the damping force of ERF shock absorbers are established.展开更多
For a conventional high-power active power factor correction(APFC)boost converter,its output capacitor needs to be precharged,which means that two power switches of the main circuit and the control circuit are needed ...For a conventional high-power active power factor correction(APFC)boost converter,its output capacitor needs to be precharged,which means that two power switches of the main circuit and the control circuit are needed to be respectively turned on and turned off in a fixed order.After the main circuit switch is turned on,it is necessary to wait for precharging before turning on the control circuit power switch.Once an inadvertent operation is performed,an overcurrent phenomenon from the output capacitor will occur.In this study,the buck circuit is used as the pre-stage snubber circuit,which can directly supply power to the circuit without precharging the output capacitor.As a result,potential safety hazard caused by the overcurrent due to the capacitor and the charging maloperation during the start-up stage can be avoided.Theoretical analysis and simulation experiment show that the DC boost converter with buck buffer can maintain the peak value of the main circuit within the safe range when the device boot does not precharge the output capacitor,and thus the safety and stable operation of the DC boost converter are ensured.展开更多
An on-chip electroosmotic(EO) micropump(EOP) was integrated in a microfluidic channel combined with a light-addressable potentiometric sensor(LAPS). The movement of EO flow towards right and left directions can be cle...An on-chip electroosmotic(EO) micropump(EOP) was integrated in a microfluidic channel combined with a light-addressable potentiometric sensor(LAPS). The movement of EO flow towards right and left directions can be clearly observed in the microfluidic channel. The characteristics of photocurrent-time and photocurrent-bias voltage are obtained when buffer solution passes through the sensing region. The results demonstrate that the combination of an on-chip EOP with an LAPS is feasible.展开更多
文摘为了提高低压差线性稳压器(low dropout regulator,LDO)在全负载电流范围内的稳定性,提出了一种采用电流缓冲器的反嵌套密勒补偿结构(reverse nested miller compensation with current buffers,RNMCCB)的LDO,外部补偿环使用电流镜作为反相电流缓冲器,内部补偿环使用共栅级放大器作为电流缓冲器。该补偿结构不需要额外的晶体管,保证了LDO的负反馈性质;引入两个左半平面的零点,增加了电路的相位裕度。仿真结果表明,在轻载(1 mA)至重载(600 mA)、输出电容为0.1~5μF环境下,最小相位裕度为38°,输出电压的下冲为10.6 mV,上冲为11.7 mV,达到设计要求。
文摘Electrorheologica (ER) technique is a developing technology. In a wide range of engineering applications of ER fluid, shock absorbers employing ER fluids, whose damping force can be controlled continuously and promptly through electric signals, is one of the most prospective applications of ER fluid. In this paper, the theoretical midel and method to predict the damping force of ERF shock absorbers are established.
基金National Natural Science Foundation of China(No.61761027)。
文摘For a conventional high-power active power factor correction(APFC)boost converter,its output capacitor needs to be precharged,which means that two power switches of the main circuit and the control circuit are needed to be respectively turned on and turned off in a fixed order.After the main circuit switch is turned on,it is necessary to wait for precharging before turning on the control circuit power switch.Once an inadvertent operation is performed,an overcurrent phenomenon from the output capacitor will occur.In this study,the buck circuit is used as the pre-stage snubber circuit,which can directly supply power to the circuit without precharging the output capacitor.As a result,potential safety hazard caused by the overcurrent due to the capacitor and the charging maloperation during the start-up stage can be avoided.Theoretical analysis and simulation experiment show that the DC boost converter with buck buffer can maintain the peak value of the main circuit within the safe range when the device boot does not precharge the output capacitor,and thus the safety and stable operation of the DC boost converter are ensured.
基金supported by the National Natural Science Foundation of China(No.61265006)the China Scholarship Council,and the Graduate School of Biomedical Engineering in Tohoku University
文摘An on-chip electroosmotic(EO) micropump(EOP) was integrated in a microfluidic channel combined with a light-addressable potentiometric sensor(LAPS). The movement of EO flow towards right and left directions can be clearly observed in the microfluidic channel. The characteristics of photocurrent-time and photocurrent-bias voltage are obtained when buffer solution passes through the sensing region. The results demonstrate that the combination of an on-chip EOP with an LAPS is feasible.